
  

Proceedings 2018, 2, 1251; doi:10.3390/proceedings2191251 www.mdpi.com/journal/proceedings 

Proceedings 

Architecture for Efficient String Dictionaries in 
E-Learning † 
Antonio Ferrández 1,*, Jesús Peral 1, Higinio Mora 2 and David Gil 2 

1 Department of Software and Computing Systems, University of Alicante, 03080 Alicante, Spain; 
jperal@dlsi.ua.es 

2 Department of Computing Technology and Data Processing, University of Alicante, 03080 Alicante, Spain; 
hmora@ua.es (H.M.); david.gil@ua.es (D.G.) 

* Correspondence: antonio@dlsi.ua.es; Tel.: +34-96-590-3400 
† Presented at the 12th International Conference on Ubiquitous Computing and Ambient Intelligence 

(UCAmI 2018), Punta Cana, Dominican Republic, 4–7 December 2018. 

Published: 18 October 2018 

Abstract: E-Learning is a response to the new educational needs of society and an important 
development in Information and Communication Technologies. However, this trend presents 
many challenges, such as the lack of an architecture that allows a unified management of 
heterogeneous string dictionaries required by all the users of e-learning environments, which we 
face in this paper. We mean the string dictionaries needed in information retrieval, content 
development, “key performance indicators” generation and course management applications. As 
an example, our approach can deal with different indexation dictionaries required by the course 
contents and the different online forums that generate a huge number of messages with an 
unordered structure and a great variety of topics. Our architecture will generate an only dictionary 
that is shared by all the stakeholders involved in the e-learning process. 

Keywords: string dictionaries; e-learning architecture; context awareness in learning process 
 

1. Introduction and Motivation 

The methods of learning have experimented a tremendous change, especially due to the 
novelties in the technology as well as the requirements requested by society. We can highlight the 
advent of the online frameworks in their diverse ways, Open and Distance Learning (ODL) [1], as 
the key factor. The inherent features of these sites offer all types of educational tools to many 
students around the world. Hence, a very significant change in the educational costs can be 
established from the more concrete elements (such as educational buildings) to the technological 
infrastructures that provide knowledge. 

The ODL platforms are mainly implemented as online web frameworks for education and 
therefore, they provide all the facilities for integrating the services used in the educational 
environment. These tools allow collaboration among all participants improving interaction. The 
increasing of the collaborative framework based on the web allows users to share information and 
take advantage of the interactions of other users. This fact leads to enhance their experience 
providing numerous benefits such as an increase in student motivation and the creation of collective 
intelligence [2]. This continuous development of web possibilities enhances the teaching-learning 
process and increases the effectiveness of learning systems in the knowledge society [3]. However, 
there are still challenges that need to be addressed for effective ODL provision and to maintain 
excellent educational standards. 

The online forum represents one of the most powerful and popular tools [4] and is a 
communication technology tool frequently used in education. Online forums provide an excellent 
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platform for learning and connecting students to the subject. They increase student engagement in 
the subject, promote deep learning, and maintain motivation [5]. However, the challenge they 
present is related to the task of managing the huge number of messages that are generated. This can 
result in topics becoming fragmented over many threads with no search facilities to discover 
relevant information [5].  

The search and information management roles may be enhanced by technological advances and 
computing methods that facilitate the educational process. Thus, Artificial Intelligence (AI) 
approaches based on Natural Language Processing (NLP) can deliver tools specifically aimed at 
students and teachers. The objective would be to make the assimilation of content and course 
tracking easier for students. Furthermore, the tools would be designed to manage the learning 
platforms by teachers, especially in online courses (MOOCs and those based on collaborative 
learning [6]). 

The working hypothesis of our research is that this kind of solutions (AI approaches based on 
NLP), used to manage ODL learning platforms by teachers and students, require complex 
architectures that must deal with huge textual corpora. For example, Information Retrieval and 
Question Answering tools will require heterogeneous string dictionaries to handle with searches on 
the course contents and the different online forums that generate a huge number of messages with 
an unordered structure and a great variety of topics. These data sets can grow to become so large 
and complex that they are difficult to process using traditional data processing applications. 
Moreover, modern NLP algorithms are often based on machine learning techniques that learn 
through the analysis of large corpora of real-world examples. For example, statistical machine 
translation systems require parallel corpora formed by millions of sentence pairs, which are often 
too large to fit entirely into main memory [7]. Therefore, in this paper we propose an architecture 
that allows a unified management of heterogeneous string dictionaries required by all the users of 
e-learning environments with high benefits resulting in a reduction of the required memory and the 
guaranteed interactions between all the textual resources (it improves the Human-Computer 
interaction supporting a global and specific data mining of the textual corpora).  

The paper is structured as follows. In Section 2, we summarize the most relevant work related 
to our proposal. In Section 3, we introduce our architecture. In Section 4, we experimentally analyze 
its efficiency. We conclude the paper with a summary of the main contributions and the directions 
for future work. 

2. Related Work 

Because of the extensive work that has been done in this area, this section has been divided into 
two parts. The first one will deal with the work related to the management of e-learning 
environments. The second one will summarize the most relevant data structures for dealing with 
string dictionaries. 

2.1. Management of E-Learning Environments 

As previously mentioned, e-learning platforms deal with teachers, students and managers of 
the courses. Each user of these platforms presents different kinds of necessities. For example, the 
managers and teachers will require to obtain performance indicators [8] with the aim of managing 
online courses and designing efficient learning strategies, such as the analysis of teacher and student 
participation rates, the extraction of qualitative and quantitative measures (student and performance 
motivation, dropout rate, etc.).  

Regarding to the diverse search operations needed by teachers and students, they can affect to 
both the contents of the course and the online forums generated by teachers and students. 
Community Question Answering (CQA) research line covers much work related to searches on 
question-and-answer websites such as Stack Overflow or Ask Ubuntu (a similar context to the one in 
the online e-learning forums). These searches present an especial treatment, since they will require 
diverse actions [9]: (1) to find the most similar question to the original question; (2) to find the most 
likely answer; (3) to determine if a question is new (it does not exist in the forum) to find the correct 
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answer; (4) to determine if a question is similar to an existing question, in which case the most likely 
answer should be found.  

The CQA forums are increasingly gaining popularity. Consequently, since 2015 during a series 
of ongoing annual competitions SemEval—Semantic Evaluation—(http://en.wikipedia.org/wiki/ 
SemEval), one of the tasks that has been developed is denominated Track 3 
(http://alt.qcri.org/semeval2017/task3/). Track 3 evaluates systems that carry out the automatic 
process of finding good answers to new questions in a forum of discussion created by the 
community. For example, by retrieving similar questions in the forum, the correct answers can be 
identified. In the SemEval-2017 competition, two additional subtasks to Track 3 have been proposed. 
In the first subtask, given a new question and a set of related questions from the collection, similar 
questions needed to be classified according to their similarity to the original new question (with the 
idea that the answers to similar questions must answer the original question also). In the second 
subtask, given a question from a question-answer thread, all the response posts were classified 
according to their relevance to the question. A detailed description of the Semeval 2016 and 2017 
editions and their participants are presented in [10,11]. 

2.2. Data Structures for Dealing with String Dictionaries 

Typical data structures for textual indexing are Hash Tables and some variants of Tries. The 
Trie, also called Digital Tree or Prefix Tree [12,13], is one of the main data structures used for indexing 
text. It is a tree for storing strings in which there is one node for every common prefix and the strings 
are stored in extra leaf nodes. Unlike a Search Tree, the nodes in the Trie do not represent elements 
stored in the structure, but the join of the characters of the nodes that form the path from the root to 
the node represent the string stored [14]. The Trie is a rather compact structure because overlapping 
prefixes are stored only once. It resolves a query that tests whether a given string belongs to the Trie 
in time only proportional to its length, unlike other data structures such as Search Trees or Hash Tables 
(an associative array whose keys are mapped to array positions by hash functions) in which the 
search time is a function of the number of elements stored. Therefore, the Trie search operations are 
faster because in most dictionaries the number of words is higher than the maximum length of a 
word. Moreover, Tries do not require complex re-balancing or tree rotation operations. Furthermore, 
Tries can be used to represent full-text indexes too: for example, the Suffix Trie is a Trie that stores all 
the suffixes of a given string.  

The main disadvantage of Tries is the high memory consumption, especially when the set of 
words is heterogeneous with a low degree of prefix sharing. This drawback is partly solved by its 
compact representation called Radix Tree, Patricia Trie, Compact Prefix Tree or C-Trie, where all nodes 
with one child are merged with their parents. In [15], a dynamic construction algorithm for the 
Compact Patricia Trie is proposed to solve the problem that the Patricia Tree requires many good 
physician storage spaces in memory, especially when the key set is too large to fit in memory.  

In addition to the compaction operation, another operation to improve the memory 
consumption in Tries is the minimization. The resulting structure is called Directed Acyclic Word 
Graph (DAWG) or Acyclic Deterministic Finite Automata (ADFA), where unlike compaction, each edge 
between nodes is labelled with a character and consequently the number of nodes is significantly 
reduced. Essentially, a DAWG/ADFA is a finite state machine that recognizes a set of words [16]. 
When both compaction and minimization are performed, the Compact Directed Acyclic Word Graphs 
(CDAWGs) are obtained [17]. 

3. The Proposed Architecture 

In this section, an architecture is presented that supports a unified management of 
heterogeneous string dictionaries required by all the users of e-learning environments. It can deal 
with different indexation dictionaries required by the course contents and the different online 
forums that generate a huge number of messages with an unordered structure and a great variety of 
topics. These dictionaries provide the required information by all the users of these e-learning 
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platforms such as “key performance indicators” (KPI) generation or generic searches on all the 
textual information generated in the platform. 

Our architecture differs from previous work because it will generate an only dictionary that is 
shared by all the stakeholders involved in the e-learning platform. In this way, a high reduction of 
the spatial requirements for storing the dictionaries is achieved. Another benefit in our proposal is 
that the interrelations between the different dictionaries is provided automatically by the shared 
dictionary, because it supports KPI extraction grouped by different dictionaries or group of 
dictionaries (e.g., the KPIs can be generated for an specific or all the online forums). The shared 
dictionary will be implemented as a Trie, because it is based on the hypothesis that Tries are more 
space efficient as they store more elements that share prefixes, as well as it does not increase the 
temporal complexity in the operations, given that this data structure keeps the complexity of the 
insertion, search, modification and deletion operations proportional to the length of the string. 
Additionally, it is based on the fact that computational applications that require text processing 
usually need more than one textual resources (e.g., an Information Retrieval application can require 
a semantic dictionary, a lexical dictionary, lists of stop-words, etc.), which are habitually stored in 
separated data structure indexes. 

This proposal presents an additional contribution in order to represent relations between 
different words, as it is required in n-grams, phrases, bitexts or biwords. Other authors (e.g., [18–20]) 
store these resources by assigning codes to words or shared substrings between different terms [21]. 
Our architecture automatically provides these codes or word identifiers. For example, if the 
following word identifiers are automatically assigned for the words: hat (6) and mat (12). Therefore, 
we can store easily the bi-gram frequency of the pair “hat-mat” by indexing the identifiers “6–12” in 
a separated data structure. 

The proposed shared Trie is represented in one-dimensional arrays unlike the traditional 
pointer-linked structure of Radix Trees and Tries: memory pointers are substituted by offsets for the 
links between nodes. It is especially important on 64-bit machines, in which pointers require 8 bytes. 
Thanks to this sequential representation, after the Trie is created, when it is stored in secondary 
memory, the subsequent load times are significantly reduced because the dynamic reservation of the 
array memory is performed in one single operation. Loading each array position is more efficient 
than the link representation, which requires creating and linking each node individually. Moreover, 
it would allow a direct access to the structure when it is stored in secondary memory in case that it 
does not fit in main memory due to the number of keys to be indexed. 

Our structure is totally dynamic by using a primary array of a fixed size BN0 and a list of arrays 
(each one of size BN). This list is populated once the primary array is full. Each array position is 
indexed sequentially starting from zero (primaryArray[0]) in order to stablish descendent, sibling 
and parent relations between Trie nodes. The indexes of Trie nodes stored in the list of arrays 
continues after the last index as presented in Figure 1.b (e.g., index 8 stores the Trie node with letter 
“l”, and with its first descendent in index 10: the node with letter “d”). 

The way to calculate the array position for a Trie index is the following. Let “p” be an Trie node 
index that ranges from zero to the number of occupied array positions (e.g., in Figure 1.b, the 
maximum “p” is 11). If “p” is lower than BN0, then it is accessed as “primaryArray[p]”. Whereas, if 
it is upper than BN0, then it is located in the “list of arrays” node number obtained from the integer 
division: “(p—BN0)/BN” (the first “list of arrays” node is numbered as zero). In this list node, it is 
stored in the array position “(p—BN0) MODULUS BN” (so the value returned will be a range 
between 0 and BN-1, because the numeration in each array ranges between these values). For 
example, in Figure 1.b with BN0 = 7 and BN = 3, index 11 is higher than BN0, then it is located in the 
list of arrays. It is in the list node number (11−7)/3 = 1. In this list node, it is stored in the array 
position [(11–7) MODULUS 3 = 1], which contains the value “par: 8” that means that the parent of 
the Trie node stored in index 11 is in index 8. 
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a) Trie insertion of “hat” 
 
Primary array              List of arrays      Graphical representation 
 
 
0 ltt: h fd: 2 eow: 0       NULL 

 

1 par: 0  
2 ltt: a fd: 4 eow: 0  
3 par: 0  
4 ltt: t fd: 0 eow: 1  
5 par: 2  
6   
   
   
   
   

b) Subsequent Trie insertion of “held” 
 
Primary array              List of arrays                     Graphical representation 
 
 
0 ltt: h fd: 2 eow: 0  7 par: 0  10 ltt: d 

fd: 0 
eow: 1 

 

1 par: 0  8 ltt: l 
fd: 10 
eow: 0 

 11 par: 8 

2 ltt: a fd: 4 eow: 0  9 par: 6  12  
3 sbl: 6       
4 ltt: t fd: 0 eow: 1       
5 par: 2       
6 ltt: e fd: 8 eow: 0       
        
        
        
        

  
Figure 1. Sequential and graphical representations of Trie (ltt: letter; fd: first descendent index; eow: 
end of word; par: parent index; sbl: sibling index; BN0 = 7; BN = 3) that indexes the terms hat and held. 

With the aim of clarifying the intuitive structure of Tries, Figure 1 illustrates two Trie examples, 
in their sequential (the primary and list of arrays) and graphical representations (the tree structure 
depicted on the right hand side of the Figure). The graphical representation shows the links stored in 
the sequential representation, exposing the Trie as a Trie structure that allows both upward (with the 
“par” index) and downward traversals (with the “fd” index). The set of descendants of a node are 
represented as an unsorted list: the first descendent is linked through the “fd” field, the end of the 
list is marked when the “par” parent index appears, and each new sibling node is inserted at the end 
of the list through the “sbl” sibling index. For example, the root of the Trie in Figure 1.b is stored in 
index 0: “ltt: h fd: 2 eow: 0”, so the letter in the node is “h”, its first descendent is in index 2, and it 
does not mark the end of a word. This descendent (ltt: a fd: 4 eow: 0) is followed by index 3 that 
contains its “sbl” sibling index (6): “ltt: e fd: 8 eow: 0”, which is followed by index 7 with the “par: 0” 
parent index that marks the end of the list of sibling nodes, and also represents the parent of this 
node (the root with letter “h”). This list is depicted in the second level of the graphical 
representation. 

The Trie insertion and search algorithm is similar to the one used in traditional Tries. In Figure 
1.a, the word “hat” is inserted, which supposes that six array positions are required: two per node. 
For example, the primaryArray[4] = “ltt: t fd: 0 eow: 1” is followed by the correspondent parent 
index, primaryArray[5] = “par: 2”, which means that the parent of the node with letter “t” is in index 
2: the node with letter “a”. Let us suppose that the word “held” is inserted subsequently, whose 
result is depicted in Figure 1.b. It requires additional memory that is stored in two “list of arrays” 
nodes (each one is an array of size BN = 3). This new word insertion implies that the node with letter 
“a” has a new sibling node with letter “e”, so the primaryArray[3] changes from the previous value 
of “par: 0” to “sibl: 6”, the position where the new node is inserted, which is followed by the 
primaryArray[7] = “par: 0” (i.e., the node with letter “h”). In the part b) of this Figure, we can see that 
only two nodes have the “end of word” flag set to 1: positions 4 and 10, which mark the end of the 
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two words inserted in the Trie. This eow flag is depicted in the graphical representation as the nodes 
with doubled line and will provide the unique identifiers of each indexed term. 

  

Figure 2. The proposed architecture. 

Primary array                        List of arrays   Graphical representation 
 
 
0 1073742696 ltt: h fd: 3 eow: 0    NULL 

 

1 1073743213 ltt: m fd: 6 eow: 0  
2 536870914 par: 0  
3 1073743201 ltt: a fd: 8 eow: 0  
4 1073743461 ltt: e fd: 10 eow: 0  
5 536870917 par: 0  
6 1073743461 ltt: e fd: 12 eow: 0  
7 536870918 par: 1  
8 3221225588 ltt: t fd: 0 eow: 1  
9 536870918 par: 3  
10 1073742956 ltt: l fd: 14 eow: 0  
11 536870919 par: 4  
12 3221225588 ltt: t fd: 0 eow: 1  
13 536870919 par: 6  
14 1073742700 ltt: l fd: 17 eow: 0  
15 1073742957 ltt: m fd: 19 eow: 0  
16 536870918 par: 10  
17 3221225583 ltt: o fd: 0 eow: 1  
18 536870916 par: 14  
19 1073742437 ltt: e fd: 21 eow: 0  
20 536870917 par: 15  
21 3221225588 ltt: t fd: 0 eow: 1  
22 536870915 par: 19  

  

Figure 3. Trie with terms and identifiers: hat (8), hello (17), helmet (21) and met (12). (ltt: letter; fd: 
first descendent index; eow: end of word; par: parent index; sbl: sibling index; BN0 = 23; BN = 5). 

The interrelations between the shared Trie and each dictionary in the proposed architecture is 
depicted in Figure 2. We propose that all these textual resources are stored in a single structure (from 
now on SharedTrie) with the arrays previously described. Moreover, the indexes of the Letter Nodes 
with the “end of word” bit set to 1 (i.e., the nodes that mean the end of a word in the Trie) will be 
used as unique identifiers of each word. The identifiers of the words of each text resource are stored 
in independent Hash Tables, which also store the data associated to each word. Therefore, the 
advantages of Hash Tables are profited in Tries: efficient looking-up data with low space 
complexity. In this way, the number of Trie nodes is highly reduced since different text resources 
share them. For example, let us suppose that the SharedTrie is the one presented in Figure 3 formed 
by the words with their respective identifiers: hat (8), hello (17), helmet (21) and met (12); and there 
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are two “StringDictionary a, b”, the first one with the words “hat, helmet” and the second one with 
“hello, met”. Then, each StringDictionary will have its own Hash Table. “a” will contain a Hash 
Table with the identifiers 8 and 21, whereas “b” will contain 17 and 12. Moreover, the insertion in 
“b” of the word “helmet” will be highly efficient because it does not suppose any node insertion 
since the word is previously inserted in the SharedTrie. Therefore, we only have to insert the 
identifier 21 in the Hash Table of “b”. 

4. Experimental Evaluation 

The experiments have been run on a 64 bit 8x Intel(R) Xeon(R) CPU E5606—2.13 GHz—32 Gb 
RAM computer with Ubuntu14.04 LTS (Linux 3.13.0-95-generic SMP x86_64 GNU/Linux). Our C++ 
implementation has been compiled with gcc version 4.8.4 with the options “-std = gnu++0x-O3”. The 
dataset used in the experiments are detailed in Table 1 and consist of 35,094,468 bytes and 5,383,339 
words, where the first six files corresponds to WordNet lexical database, the following two files 
corresponds to standard stopword files, the penultimate file is a dictionary with morphological 
knowledge, and the last one is a corpus of forums extracted from the free online course named titled 
“Statistics in Medicine” https://lagunita.stanford.edu/courses/Medicine/MedStats./Summer2015. 
This set of files is usually required in a typical e-learning platform. In this way, the proposed 
experiments emulate a real situation where all this textual information must be processed and 
indexed in the same platform. 

Table 1. Description of the datasets used in the experiments. 

 
Bytes File Num. Words 
832,275 Dictionary of noun synonyms 74,487 
153,215 Dictionary of verb synonyms 14,585 
1,154,098 Dictionary of noun hyperonyms 121,484 
732,253 Dictionary of noun hyponyms 74,570 
205,808 Dictionary of verb hyperonyms 21,664 
134,413 Dictionary of verb hyponyms 13,733 
2,152 Spanish Stopwords  344 
2,485 English Stopwords 429 
2,136,728 Lexical dictionary 243,297 
29,741,041 Corpus of online forums 4,818,746 
35,094,468 TOTAL 5,383,339 

 

The experiment is run on the whole dataset in Table 1, trying to prove that our proposal is not 
degraded as the number of dictionaries grows: 5,383,339 words and 10 dictionaries, with no 
temporal complexity increase in search and insert operations. The results are summed up in Table 2, 
in which the memory consumption has been measured by using the C++ program in 
http://dis.um.es/~ginesgm/files/doc/memory.cpp; http://dis.um.es/~ginesgm/medidas.html#mt that 
returns the maximum memory usage in kilobytes by scanning the file “/proc/process_id/smaps” 16 
times per second. The running time shown has been measured in seconds by the getrusage function 
that reports resource usage totals for processes. The “Trie” and “Radix Tree” row in Table 2 denotes 
our C++ Trie and Radix Tree implementation. Finally, the “Hash Table” indicates the STL Hash 
Table “unordered_set<string>”, in order to perform an external evaluation and comparison with an 
efficient and widely used data structure. The SharedTrie is the most memory efficient, followed by 
the Radix Tree in 37%. The Hash Table presents the best temporal efficiency, but with no 
significative differences regarding our proposal (the second fastest one): 4.5 s in comparison with the 
2.5 s employed in 5,383,339 search operations (the whole corpora). Moreover, the time required for 
the creation operation is much lower in the SharedTrie in comparison with the Trie, Hash Table and 
Radix Tree: 0.5 s, 7.05 s, 18.6 s, 3.4 s and 158.5 s respectively, which proves the benefits of our 
proposal. The highest creation time measured for the Radix Tree corroborates the fact that it has a 
significant cost when compressed segments need to be split or merged. 
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Table 2. Results of the experiment. 

 (b)Max.  
memory  
usage (kB) 

 Search  
Time  
(s) 

 

SharedTrie 32,632  4.5  
Trie 85,588 +162% 23.6 +421% 
Hash Table 60,876 +87% 2.5 -44% 
Radix Tree 44,828 +37% 61.6 +1,259% 

 

5. Conclusions and Future Research 

In this paper, we have faced a problem present in many e-learning platforms about the 
management of all the textual information generated by these platforms. We have proposed an 
architecture that supports a unified management of heterogeneous string dictionaries required by all 
the users of e-learning environments. Our architecture will generate an only dictionary that is shared 
by all the dictionaries in the e-learning courses. The main advantages of our proposal are: (1) the 
reduction of the spatial requirements for storing the dictionaries; (2) the interactions between all the 
dictionaries that are supported automatically (e.g., can be used to obtain key performance indicators 
from the shared dictionary for the whole course management or an specific forum, which results in 
an improved Human-Computer interaction, both global and specific). The benefits of our 
architecture are experimentally proved in comparison with other proposals. As future projects, the 
authors plan to release the architecture as a public C++ library. Moreover, we will try to improve the 
temporal efficiency with alternative representations and implementations. This fact will aim us to 
explore other domains to apply, and especially in the health area where the amount as well as the 
variety of data is huge. 
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