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Abstract: The variable selection problem is studied in the sparse semi-functional partial linear model,
with single-index type influence of the functional covariate in the response. The penalized least
squares procedure is employed for this task. Some properties of the resultant estimators are derived:
the existence (and rate of convergence) of a consistent estimator for the parameters in the linear part
and an oracle property for the variable selection method. Finally, a real data application illustrates
the good performance of our procedure.
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1. Introduction

In many real problems, to predict the value of a random variable, observations of many other
variables are available. However, in many cases, it is unknown which of them (very few) have a real
influence in the response. In this practical framework, we need procedures able to select the relevant
variables to avoid high-dimensionality problems. Reducing the complexity of the model becomes
even more crucial when regression involves a functional variable too (data are functions, images. . . ).
Therefore, the main goal is the simplification of the model, which makes easier both its estimation and
interpretation, without losing its predictive efficiency.

These practical problems have motived the peak of semiparametric models in the functional
regression, together with the variable selection procedures. In [1] the penalized least squares method
for estimation and variable selection is studied for the partial linear model with functional covariate.
In this model, the real variables have a linear effect (involving interpretable coefficients that are the
parameters) in the response, while the infinite-dimensional covariate has a nonlinear (nonparametric)
influence. However, in real data applications, it would be interesting having parameters related
to the functional variable to derive practical interpretations. This is one of the advantages of the
semi-functional partial linear single-index model (SFPLSIM): the real covariates also affect in a linear
way to the response, but the infinite-dimensional covariate influences it trough a projection in an
unknown direction, after applying a nonlinear link function. This direction of projection behaves like a
function-parameter that could have interesting interpretations. Some theoretical properties related
to the nonparametric estimation of the functional single-index model are given in [2]. In this paper,
we will study the sparse SFPLSIM, focusing in the variable selection problem. For this purpose, we will
use the penalized least squares procedure for estimating the parameters of the lineal components and,
simultaneously, selecting the relevant covariates. The properties of the estimators will be analysed
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from a theoretical point of view: we will set its convergence rates and the consistency for selecting the
model. These results will be illustrated through a real data application.

2. The Model

The SFPLSIM is defined by the relationship

Yi = Xi1β01 + · · ·+ Xipn β0pn + m (〈θ0,Xi〉) + εi, ∀i = 1, . . . , n, (1)

where Yi denotes a scalar response, Xi1, . . . , Xipn are random covariates taking values in R and Xi
is a functional random covariate valued in a separable Hilbert space H with inner product 〈·, ·〉.
βββ0 = (β01, . . . , β0pn)

> ∈ Rpn , θ0 ∈ H and m(·) are a vector of unknown real parameters, an unknown
functional direction and an unknown smooth real-valued function, respectively. Finally, εi is the
random error, which verifies E

(
εi|Xi1, . . . , Xipn ,Xi

)
= 0.

3. The Penalized Least-Squares Estimators

For the purpose of simultaneously estimating β-parameters and selecting relevant X-covariates
in the SFPLSIM (1), we will apply the penalized least-squares approach. For that, in a first step
we transform the SFPLSIM in a linear model by extracting from Yi and Xij (j = 1, . . . , pn) the
effect of the functional covariate Xi when is projected on the direction θ0. Specifically, denoting by
XXXi =

(
Xi1, Xi2, . . . , Xipn

)> , XXX = (XXX1, . . . , XXXn)
> and YYY = (Y1, . . . , Yn)

>, the fact that

Yi −E (Yi| 〈θ0,Xi〉) = (XXXi −E (XXXi| 〈θ0,Xi〉))> βββ0 + εi, ∀i = 1, . . . , n, (2)

allows to consider the following approximate linear model (see Appendix A for understanding
the notation):

ỸYYθ0 ≈ X̃XXθ0βββ0 + εεε, (3)

where εεε = (ε1, . . . , εn)
>. Then, in a second step, the penalized least-squares approach is applied to

model (3). Specifically, βββ0 and θ0 are estimated by considering a minimizer, (β̂ββ0, θ̂0), of the penalized
profile least-squares function

Q (βββ, θ) =
1
2

(
ỸYYθ − X̃XXθβββ

)> (
ỸYYθ − X̃XXθβββ

)
+ n

pn

∑
j=1
Pλjn

(
|β j|
)

,

where βββ = (β1, . . . , βpn)
>, Pλjn

(·) is a penalty function and λjn > 0 is a tuning parameter. Note that,
simultaneously to the parameter estimation, the previous procedure can be considered as a variable
selection method: if β̂ββ0j is a non-null component of β̂ββ0, then Xj is selected as an influential variable.

From now on, we will denote Jn = {1, . . . , pn} and Sn ⊂ Jn such that β0j 6= 0 for j ∈ Sn and β0j = 0
for j ∈ Sc

n = Jn/Sn. In addition sn will mean card(Sn) and we will assume that Sn = {1, . . . , sn}.

4. Asymptotic Theory

In this paper, the existence of the penalized estimator is established as well as the corresponding
rates of convergence. In particular, under some assumptions, we proved that there exists a local
minimizer

(
β̂ββ0, θ̂0

)
of Q (βββ, θ) such that

∥∥∥β̂ββ0 − βββ0

∥∥∥ = Op

(√
sn

(
n−1/2 + δn

))
where δn = max

j∈Sn

{∣∣∣P ′λjn

(
|β0j|

)∣∣∣} . (4)

Furthermore, the selected set of variables, Ŝn = {j ∈ Jn; β̂0j 6= 0}, works as well (at least
asymptotically) as it would do if the true set of relevant variables Sn was known. Specifically,
P(Ŝn = Sn)→ 1 as n→ ∞.



Proceedings 2018, 2, 1190 3 of 3

An application to real data is included, which shows the good performance of the presented
method in terms of error of prediction.
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Abbreviations

The following abbreviations are used in this manuscript:

SFPLSIM Semi-functional partial linear single index model

Appendix A. Notation

For any (n× q)-matrix AAA (q ≥ 1), if III is the (n× n)-identity-matrix, we denote

ÃAAθ = (III −WWWh,θ) AAA, where WWWh,θ =
(
wn,h,θ(Xi,Xj)

)
i,j ,

with wn,h,θ(·, ·) being the weight function

wn,h,θ(χ,Xi) =
K (dθ (χ,Xi) /h)

∑n
j=1 K

(
dθ

(
χ,Xj

)
/h
) ,

where K : R+ → R+ is a kernel function, h > 0 is a smoothing parameter and, for θ ∈ H, dθ(·, ·) is the
semimetric defined as

dθ

(
χ, χ′

)
=
∣∣〈θ, χ− χ′

〉∣∣ , ∀χ, χ′ ∈ H.
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