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Abstract: The aim of this work is to propose and analyze the behavior of a test statistic to assess a
parametric trend surface, that is, a regression model with spatially correlated errors. The asymptotic
behavior under the null hypothesis, as well as the asymptotic power of the test under local alternatives
will be analyzed. Finite sample performance of the test is addressed by simulation, introducing a
bootstrap calibration procedure.
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1. Introduction

Consider a spatial stochastic process, which consists of a collection of random variables indexed
on a certain domain of R2, with a well-defined joint distribution. In this framework, the observed
data usually exhibit an important feature: close observations tend to be more similar than those which
are far apart. Therefore, such observations cannot be treated as independent and the dependence
structure should be taken into account in any descriptive or inferential procedure. In particular, from
the perspective of spatial regression models (a trend surface plus an error term), the dependence
structure should be considered and properly introduced into the model.

A common task in statistics is to determine whether a parametric model is an appropriate
representation of a dataset. Under the assumption of independent errors, some authors have
developed goodness-of-fit tests for parametric models that rely on a smooth alternative estimated by a
nonparametric regression method, as [1] or [2].

A new proposal for testing a parametric trend surface is given in this paper. The proposed test is
based on a comparison between a smooth version of a parametric fit with a nonparametric estimator
of the trend (specifically, the multivariate local linear estimator will be used) in terms of a distance.

2. Statistical Model

Let {Z(s), s ∈ D} be a random spatial process consisting of collections of random variables
indexed in a domain D ⊂ R2 with a well-defined joint distribution. Consider n locations {s1, . . . , sn}
on the region D generated from a density f . The set of random variables corresponding with those
locations will be represented by {Z(s1), . . . , Z(sn)}. Assume the model

Z(si) = m(si) + ε(si), i = 1, . . . , n, (1)

where m is an unknown smooth regression function which is supposed to be twice continuously
differentiable. The ε are unobserved random variables with
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E[ε(si)] = 0, Cov(ε(si), ε(sj)) = σ2ρn(si − sj), i, j = 1, . . . , n,

where σ2 < ∞ and ρn is a continuous correlation function satisfying ρn(0) = 1, ρn(s) = ρn(−s) and
|ρn(s)| ≤ 1, ∀s. The goal of this work is to test if the trend function belongs to a parametric family:

H0 : m ∈ Mβ = {mβ, β ∈ B}, vs. Ha : m /∈ Mβ, (2)

with B ⊂ Rp a compact set. One of the more usual approaches is to compare a smooth version of
a parametric fit with a nonparametric estimator of m(s) and “thereafter” to reject H0 if the distance
between both fits exceeds a critical value.

3. Test Statistic

A suitable test statistic in order to solve the testing problem (2) could be computed as a weighted
L2—distance between the nonparametric and parametric fits, as in [2]:

Tn = n|H|1/2
∫

D
(m̂LL

H (s)− m̂LL
H,β̂(s))

2w(s)ds, (3)

where w is a weight function. A full definition of the elements of the test statistic Tn can be found
in Appendix A. For the calibration of the critical values, a bootstrap procedure is considered, see
Appendix B.

4. Simulations

In this section, a simulation study showing the performance of the bootstrap procedure is
presented. For this purpose, 500 samples of size n = 400 are generated from an isotropic spatial
process observed at regularly spaced locations {s1, . . . , sn} in the unit square, where si = (si1, si2),
i = 1, . . . , n:

Z(si) = 2 + si1 + si2 + cs3
i1 + ε(si), 1 ≤ i ≤ n. (4)

The random errors ε(si) are normally distributed with zero mean and exponential covariance
function Cov(ε(si), ε(sj)) = σ2{exp(−‖si − sj‖/ae)}, with σ = 0.4 and σ = 0.8. Different values of
parameter ae are considered: ae = 0.4, 0.6, 0.8. The bootstrap procedure has been performed using
B = 500 replicas for each sample. The weight function used was taken as w(s) = 1. For simplicity,
the bandwidth matrix was considered H = diag(h, h), and different bandwidth values were chosen,
h = 0.10, 0.15, 0.20.

In Table 1, the simulated rejection probabilities obtained for Tn are presented for the significance
level α = 0.05 over the 500 trials. When c is equal to zero (under the null hypothesis of linearity of
the trend), the proportion of rejections obtained is similar to the considered significance level, but this
proportion depends directly on the value of the bandwidth h. When c is equal to 5 or 10, the power of
the test is really good, since the proportion of rejections is close to one, in the majority of the cases.
Again, this proportion depends on the value of the bandwidth.
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Table 1. Proportion of rejections of the null hypothesis.

h

σ ae c 0.10 0.15 0.20

0.4 0.4 0 0.052 0.047 0.042
5 0.897 0.932 0.911
10 0.905 0.948 0.923

0.4 0.6 0 0.054 0.042 0.034
5 0.856 0.901 0.898
10 0.894 0.926 0.918

0.8 0.8 0 0.068 0.048 0.038
5 0.808 0.798 0.806
10 0.845 0.803 0.816
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Appendix A

The trend surface estimation can be performed using a parametric and a non-parametric
approach. In the parametric context, an iterative estimation procedure could be used. Denoting
Z = (Z(s1), · · · , Z(sn))′ and mβ = (mβ(s1), . . . , mβ(sn))′, under H0 the steps of the procedure are:

(1) Based on the sample, estimate the trend parameter β using the ordinary least squares estimator,
ignoring the dependence structure of the errors:

β̃ = arg min
β

(Z−mβ)
′(Z−mβ).

(2) Estimate the variance-covariance matrix of the errors Σ using the residuals ε̃(si) = Z(si)−
mβ̃(si), i = 1, . . . , n, obtained from the estimator of the trend from Step (1). Note that, the entries of
Σ are:

Σ(i, j) = Cθ(si − sj), i, j = 1 . . . , n,

where Cθ(si − sj) = σ2 − γθ(si − sj), being {2γθ(u) : θ ∈ Θ ⊂ Rq} a valid parametric family to
estimate the variogram function.

(3) Estimate the trend parameter β using the weighted least squares estimator, taking the
dependence structure of the errors into account:

β̂ = arg min
β

(Z−mβ)
′Σ̃−1(Z−mβ).

Therefore, the parametric trend estimator considered would be mβ̂. Note that, an estimation of Σ
can be obtained from the residuals ε̃(si), i = 1, . . . , n, as follows:

Σ̃(i, j) = Cθ̃LS
(si − sj) = σ̃2 − γθ̃LS

(si − sj), i, j = 1 . . . , n,

where γθ̃LS
is the parametric least squares estimator of the variogram and σ̃2 is an estimator of the

variance. The last estimator could be obtained using a least squares procedure.
From a nonparametric point of view, model (1) has been studied by several authors.

Some approaches used for this task include kernel-based methods. In this case, the trend is estimated
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using the multivariate local linear estimator, see [3]. In the spatial framework, the local linear estimator
for m(s) at a location s can be explicitly written as

m̂LL
H (s) = e′1(X′sWsXs)

−1X′sWsZ,

where e1 = (1, 0, 0)′, Xs is a n × 3 matrix whose i-th row equals (1, (si − s)′), i = 1, . . . , n, Ws =

diag{KH(s1 − s), . . . , KH(sn − s)}, where KH(s) = |H|−1K(H−1s) is used to assign weights. H is a
2× 2 symmetric, positive definite matrix depending on the sample size n and K is a multivariate kernel
function. Given s, the bandwidth H controls the shape and the size of the local neighborhood used to
estimate m.

Therefore, taking into account these estimators, the proposed test statistic is

Tn = n|H|1/2
∫

D
(m̂LL

H (s)− m̂LL
H,β̂(s))

2w(s)ds,

where w is a weight function and m̂LL
H,β̂

is a smooth version of the parametric estimator mβ̂, which is
defined by

m̂LL
H,β̂(s) = e′1(X′sWsXs)

−1X′sWsmβ̂,

where mβ̂ = (mβ̂(s1), . . . , mβ̂(sn))′.

Appendix B

Once a suitable test statistic is available, a crucial task is the calibration of critical values for a given
level α, namely tα. Usually, the estimation of these critical values tα such that PH0(Tn ≥ tα) = α can be
done by means of the asymptotic distribution. The use of asymptotic theory to calibrate the test poses
some problems, such as the need to estimate some nuisance functions and a slow convergence rate to
the limit distribution. Under these circumstances, calibration can be done by means of resampling
procedures, such as bootstrap, see [4].

The procedure consists in generating a bootstrap sample {Z∗(si), i = 1, . . . , n} and then
computing a bootstrap statistic T∗n like Tn by the squared deviation between the smooth version
of the parametric fit m̂LL

β̂∗
and the nonparametric fit m̂∗LL. Once the bootstrap statistic is computed,

the distribution of T∗n can be approximated by Monte Carlo. From this Monte Carlo approximation,
the (1− α) quantile t∗α is defined and the parametric hypothesis es rejected if Tn > t∗α. The specific
steps for the algorithm used in this work are the following:

1. Obtain the parametric trend estimator β̂.
2. Estimate the covariance matrix of the errors Σ̂ based on the residuals ε̂ = (ε̂(s1), . . . , ε̂(sn))′, where

ε̂(si) = Z(si)− mβ̂(si), i = 1, . . . , n, and find the matrix L, such that Σ̂ = LL′, using Cholesky
decomposition.

3. Compute the independent residuals, e = (e(s1), . . . , e(sn))′, given by e(si) = L−1 ε̂(si).
4. These independent variables are centered and, from them, we obtain an independent bootstrap

sample of size n, denoted by e∗ = (e∗(s1), . . . , e∗(sn)).
5. Finally, the bootstrap errors ε∗ = (ε∗(s1), . . . , ε∗(sn)) are ε∗(si) = Le∗(si), and the bootstrap

samples are Z∗(si) = mβ̂(si) + ε∗(si).
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