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Abstract: Bootstrap methods are used for bandwidth selection in: (1) nonparametric kernel density
estimation with dependent data (smoothed stationary bootstrap and smoothed moving blocks
bootstrap), and (2) nonparametric kernel hazard rate estimation (smoothed bootstrap). In these
contexts, four new bandwidth parameter selectors are proposed based on closed bootstrap expressions
of the MISE of the kernel density estimator (case 1) and two approximations of the kernel hazard rate
estimation (case 2). These expressions turn out to be very useful since Monte Carlo approximation is
no longer needed. Finally, these smoothing parameter selectors are empirically compared with the
already existing ones via a simulation study.
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1. Introduction

This work deals with the well known problem of data-driven choice of smoothing parameters
in nonparametric density and hazard rate estimation (see [1–4]). Our aim is also to propose new
bootstrap procedures for nonparametric density estimation considering dependent data. On the other
hand, hazard rate estimation is considered and two bootstrap bandwidth selectors based on some
approximation of the kernel hazard rate estimator are proposed.

2. Nonparametric Density Estimation

Let us consider a random sample, (X1, . . . , Xn), coming from a population with density f and
the kernel density estimator (see [5,6]), which strongly depends on a bandwidth selector, h. In fact,
its choice is really important since it regulates the degree of smoothing applied to the data.

In this context, the smoothed stationary bootstrap (SSB) resampling plan has been proposed (see
the Appendix for a detailed description of the algorithm and [7]), as well as a bandwidth selector,
namely h∗SSB. It is the result of minimizing the SSB version of the MISE. A closed expression for the
bootstrap MISE is also obtained by [7]. On the other hand, smoothed moving blocks bootstrap (SMBB)
has been proposed (see the Appendix for a complete description of the method), as well as a bandwidth
selector, h∗SMBB, which is the minimizer in h of the closed expression for the MISE∗SMBB (see [8] for a
deeper insight on the topic). It is worth mentioning that the exact expressions for the MISE∗SSB(h) and
MISE∗SMBB(h) are really useful since Monte Carlo approximation is no longer necessary.
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3. Nonparametric Hazard Rate Estimation

Let us consider (X1, X2, . . . , Xn), a simple random sample coming from a population with
continuous density f and cumulative distribution function F. Consider, additionally, the nonparametric
hazard rate estimator (see [3,4]), the kernel density estimator f̂h and the kernel distribution estimator F̂h.
In order to establish a bootstrap bandwidth selector for the hazard rate estimator, two approximations
of the hazard rate estimator are considered. The two hazard rate approximated versions are given by:

r̃h,1(x) =
f̂h(x)

1− F(x)
.

r̃h,2(x) =
1

1− F(x)
f̂h(x) +

f (x)
(1− F(x))2 F̂h(x)− f (x)

(1− F(x))2 + r(x).

Closed-form expressions of the MISE of r̃h,1 and r̃h,2, as well as their bootstrap versions can be
found in [9]. Moreover, two bootstrap bandwidth selectors, namely hBOOT1 and hBOOT2, are defined
as the minimizers of MISE∗r̃h,1,w(h) and MISE∗r̃h,2,w(h), respectively (see [9] for a deeper insight on the
approach). It is worth mentioning that Monte Carlo approximation is not required.

4. Simulation Results

A simulation study is now carried out in order to check the good empirical behaviour of the new
smoothing parameter selectors in both contexts. These are the models considered:

1. Density estimation: An AR(1) model given by Xt = −0.6Xt−1 + 0.8at, where at
d
= N(0, 1).

2. Hazard rate estimation: A Gumbel model such that f (x) = e−xe−e−x
, ∀x ≥ 0.

5. Discussion

Figure 1 shows that h∗SSB and h∗SMBB display a similar performance, actually the best one.
According to Table 1, hBOOT1 and hBOOT2 display the overall best performance.
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Figure 1. Boxplot of log
(

MISE(ĥ)/MISE(hMISE)
)

, n = 100, where ĥ = hCVl (first box), hSMCV

(second box), hPCV (third box), h∗SSB (fourth box), h∗SMBB (fifth box) and hPI (sixth box).
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CV DO BOOT1 BOOT2 GCM

Gumbel model Mean 0.1656 0.01651 0.02914 0.02882 0.03595
Median 0.15527 0.01037 0.012844 0.01282 0.01739

Table 1. Mean and median of ISE(ĥ), n = 100, where ĥ = hCV (third column), hDO (fourth column),
hBOOT1 (fifth column), hBOOT2 (sixth column) and h∗GCM (seventh column).
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Abbreviations

The following abbreviations are used in this manuscript:

MISE Mean integrated squared error
ISE Integrated squared error
SSB Smoothed stationary bootstrap
SMBB Smoothed moving blocks bootstrap
iid Independent and identically distributed
hDO DO-validation bandwidth selector for hazard rate estimation (see [10])
h∗GCM González-Manteiga, Cao, Marron bandwidth selector for hazard rate estimation (see [11])
hPI Plug-in bandwidth selector for bandwidth selection with dependent data (see [12])
hCVl Leave-(2l + 1)-out cross-validation for density estimation (see [13])
hSMCV Modified cross validation for density estimation with dependent data (see [8])
hPCV Penalized cross validation for density estimation with dependent data (see [8])
hCV Cross validation bandwidth selector for hazard rate estimation (see [14])
hMISE Bandwidth selector which minimizes the theoretical MISE(h)

Appendix A

Smoothed stationary bootstrap

1. Draw X∗(SB)
1 from Fn, the empirical distribution function of the sample.

2. Define X∗1 = X∗(SB)
1 + gU∗1 , where U∗1 has been drawn with density K and independently

from X∗(SB)
1 .

3. Assume we have already drawn X∗1 , . . . , X∗i (and, consequently, X∗(SB)
1 , . . . , X∗(SB)

i ) and

consider the index j, for which X∗(SB)
i = Xj. We define a binary auxiliary random

variable I∗i+1, such that P∗
(

I∗i+1 = 1
)

= 1 − p and P∗
(

I∗i+1 = 0
)

= p. We assign

X∗(SB)
i+1 = X(j mod n)+1 whenever I∗i+1 = 1 and we use the empirical distribution function for

X∗(SB)
i+1 |I∗i+1=0, where mod stands for the modulus operator.

4. Once drawn X∗(SB)
i+1 , we define X∗i+1 = X∗(SB)

i+1 + gU∗i+1, where, again, U∗i+1 has been drawn from

the density K and independently from X∗(SB)
i+1 .

Smoothed moving blocks bootstrap

1. Fix the block length, b ∈ N, and define k = min`∈N ` ≥ n
b
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2. Define:
Bi,b = (Xi, Xi+1, . . . , Xi+b−1)

3. Draw ξ1, ξ2, . . . , ξk with uniform discrete distribution on {B1, B2, . . . , Bq}, with q = n− b + 1

4. Define X∗(MBB)
1 , . . . , X∗(MBB)

n as the first n components of

(ξ1,1, ξ1,2, . . . , ξ1,b, ξ2,1, ξ2,2 . . . , ξ2,b, . . . , ξk,1, ξk,2, . . . , ξk,b)

5. Define X∗i = X∗(MBB)
i + gU∗i , where U∗i has been drawn with density K and independently from

X∗(MBB)
i , for all i = 1, 2, . . . , n
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