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Abstract: We introduce a “Chunk-and-Pass” parsing technique influenced by a psycholinguistic 
model, where linguistic information is processed not word-by-word but rather in larger chunks of 
words. We present preliminary results that show that it is feasible to compress linguistic data into 
chunks without significantly diminishing parsing performance and potentially increasing the 
speed. 
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1. Introduction 

Syntactic information is required to fully understand linguistic information: utterances are not 
just a string of words with a meaning solely derived from the semantics of each individual word. 
The way they are combined also affects meaning. In this context, syntactic analysis can augment 
many applications in natural language processing (NLP), e.g., state-of-the-art semantic analysis and 
information retrieval. Dependency parsers are used in these systems as the other main flavour of 
parsers, constituency parsers, are orders of magnitude slower. Still, state-of-the-art dependency 
parsers can only process about 100 sentences per second [1]. For large-scale analyses, this is 
cost-prohibitive. 

Dependency parsing represents relations between words with arcs, e.g., the phrase “I felt” 
would have an arc from “felt” (the head) to “I” (the dependent) and with a nsubj label (see Figure 1). 
Attachment scores are used to evaluate dependency parsers: unlabelled (UAS) measures the number 
of correct heads and labelled (LAS) measures this and the labelling accuracy. 

 

Figure 1. Initially the sentence is processed by the chunker. The contents of the chunks are then sent 
to the inside parser and the abstract representation of the sentence is sent to the outside parser. The 
predictions from both are then collated to form the full parse. 

Our technique to increase parsing efficiency is inspired by the “Chunk - and - Pass” 
psycholinguistic model, where an ever increasing abstract hierarchical representation of linguistic 
input is created in order to process it efficiently and to overcome working-memory restrictions [2]. 
This entails finding phrases in sentences which can be extracted and processed by a faster but less 
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robust parser, while the more abstract form with more complicated relations is parsed by a slower 
and more thorough parser.  

2. Materials and Methods 

The implementation consists of a supervised chunker; an inside parser which analyses the 
words within the chunks; and an outside parser which analyses the relationships between chunks 
(see Figure 1). The dataset used was the Universal Dependency English EWT treebank v2.1 [3]. 

The supervised chunker was implemented using a neural sequence labelling toolkit (NCRF++) [4]. 
We generated gold labels for the chunker using the BIO tagging scheme, where B is the beginning, I 
is inside, and O is outside of a chunk. B and I tags were suffixed with the phrase type of the chunk, 
e.g., B-NP and I-NP for noun-phrase chunks. The labels were generated by using part-of-speech rule 
sets automatically extracted from the training data. An example rule for a noun phrase could be DET 
ADJ NOUN. Each set has a threshold on the ratio between invalid (containing unrelated words) and 
valid chunks when used with an unsupervised rule-based chunker. 

The inside parser used the arc eager algorithm in MaltParser [5]. The outside parser used a 
neural network (NN) implementation of the stack-based arc standard algorithm [6] with 
universal-dependency-specific features [7]. The inside parser has a speed of ≈16,500 tokens per 
second (TPS), the chunker of ≈10,200 TPS, and the outside of ≈2000 TPS, so a compression ratio 
(initial tokens to resulting chunks) of 1.6 can theoretically increase the speed relative to using just the 
NN parser by 15%. 

3. Results 

Figure 2a shows the dependency of the supervised chunker’s performance on the global ratio 
threshold of the rule sets used to generate gold-labelled data as described above. Also in Figure 2a 
the chunker’s compression ratio with respect to the rule threshold is shown. Figure 2b shows the 
parsing performance of the full system, the inside parser, the outside parser, and the corresponding 
performance of the baseline model (NN stack-based arc standard) for each. 

  
(a) (b) 

Figure 2. (a) NCRF++ performance and the corresponding compression rate for different rule sets.  
(b) Inside (green, square), outside (blue, triangle), and full-system (magenta, circle) scores using 
NCRF++ chunker for different rule sets. Baseline refers to the performances of the baseline model for 
the corresponding sections that were sent to each sub-parser and are displayed as continuous lines. 

4. Discussion 

As seen in Figure 2a, it is not useful to use rule sets with ever decreasing performances as the 
compression return begins to diminish, so there appears to be an upper limit of efficiency 
improvement. In Figure 2b, it can be observed that the inside chunker does not lose much accuracy. 
The loss is more pronounced for the outside parser. This is likely due to the decrease in contextual 
information it has and the more complicated relationships it has to process. Despite this, the best 
compression to performance rule set (9% threshold) only loses 1.25 UAS and 2.2 LAS points. 
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We have shown initial results that highlight the efficacy of this approach. Further research will 
be focused on optimising the implementation and acquiring accurate speed measurements. Beyond 
this, we will expand the system to process other languages. 

Funding: This work has received funding from the European Research Council (ERC), under the European 
Union’s Horizon 2020 research and innovation programme (FASTPARSE, grant agreement No 714150). 
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