
                    

Proceedings 2018, 2, 1146; doi:10.3390/proceedings2161146 www.mdpi.com/journal/proceedings 

Extended Abstract 

Effect of Extreme Climate on Long-term Performance 
of Railway Prestressed Concrete Sleepers † 
Dan Li 1,* and Sakdirat Kaewunruen 1,2 

1 Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, 
UK; S.Kaewunruen@bham.ac.uk 

2 Birmingham Centre for Railway Research and Education, School of Engineering, University of 
Birmingham, Birmingham B15 2TT, UK 

* Correspondence: DXL561@student.bham.ac.uk; Tel.: +44-794-625-6688 
† Presented at 2018 International Symposium on Rail Infrastructure Systems Engineering (i-RISE 2018), Brno, 

Czech Republic, 5 June 2018. 

Published: 14 September 2018 
 

Prestressed concrete is currently the most used material for railway sleepers because of its 
superior advantages in structural performance, low maintenance, sustainability, and construction. In 
practice, many prestressed concrete sleepers are applied in harsh environments subject to various 
changes of climate uncertainties. Therefore, environmental conditions are a considerably influential 
factor to the time-dependent behaviour of prestressed concrete sleepers. Climate uncertainty has 
become a significant issue around the world which has been raised as a global political problem. The 
reasons resulting in climate change could be human activities, biotic processes, variations in solar 
radiation received by Earth, and volcanic eruptions. In recent years, the climate change caused the 
frequency of severe weather patterns increasing (IPCC 2007). Therefore, the railway infrastructure 
exposed to various extreme climates, the performance can be directly influenced by climate change. 
‘Extreme climate’ is defined as unusual, unexpected or unpredicted severe weather based on the 
historical record in the most unusual ten percent [1–18].  

The time-dependent behaviour of concrete has been investigated over a century ago. The 
gradual development of concrete deformation with time is due to creep and shrinkage. Creep strain 
is that the strain increases with time under the constant stress. Shrinkage is not relevant to stress and 
results primarily from the several factors such as loss of water. Creep and shrinkage can cause 
unduly axial deformation, excessive pre-camber, and loss of prestress. The excessive deflection and 
excessive shortening are often caused by creep and shrinkage. The unsightly cracking could occur 
that results in impaired serviceability and durability issues. Environmental factors can largely 
influence creep and shrinkage. For example, temperature rise increases the deformability of cement 
paste and accelerates drying [19,20].  

This study aims at investigating the effects of extreme climatic conditions on the performance 
and time-dependent behaviour of prestressed concrete sleepers using contemporary design 
approaches. The study into the effects of climate uncertainties on creep and shrinkage has been 
investigated on the basis of both environmental temperature and relative humidity. The outcomes 
indicate that environmental conditions play a vital role in the time-dependent behaviour of 
prestressed concrete sleepers. The insight of this research can be used to evaluate the serviceability 
of prestressed concrete sleepers installed in extreme natural climate regions. The effect of extreme 
climate on long-term performance of prestressed concrete sleepers is shown as Figure 1. 
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Figure 1. The effect of extreme climate on long-term performance of prestressed concrete sleepers. 
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