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Abstract: There are strong policy drivers for the promotion of energy efficiency in buildings. In the
literature, Model Predictive Control (MPC) is seen as a promising solution to deal with the energy
management problem in buildings. Model identification is the primary task involved in the design of
MPC control and defining the good level of complexity for the thermal dynamic model is a critical
question. This paper focuses on the development of reliable models that can be used to support the
deployment of (Distributive (Di)) MPC application.
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1. Introduction

It is well accepted that energy consumption in buildings accounts for more than 40% of the total
primary energy resources throughout the world [1]. Therefore it is an essential to enact strategies for
energy conservation and energy management in buildings [2,3]. A promising solution for BEMS [4] is
Model Predictive Control (MPC) that is able to deal with various objectives at the same time, under
constraints. For instance, both comfort and energy can be considered taking into account occupancy
schedule, weather forecast, etc. MPC is a model-based control technique: it requires a dynamical
discrete-time model of the building under control to predict the behavior in building zones. Although
system modelling and parameter identification are mature scientific domains, their application to
real buildings is still laboursome, time consuming and error prone [5]. This paper focuses on the
development of reliable models that can be used to support the deployment of (Distributive (Di))
MPC applications.

2. Problem Statement

Consider a multizone building with thermal and comfort coupling between zones, actuators and
outdoor conditions such as that depicted in Figure 1. We denote ui(k) as the manipulated variable,
wi(k) as the exogenous ones and vi(k) the coupling effects. The modelling problem can be stated
as follow: define the function F

(
k, xi, ui, wi, vi

)
, which represents the zone behavior and is accurate,

modular and suitable for DiMPC, with respect to the highly coupled interactions.
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Figure 1. Building with multiple zones (left); zone representation with regulated, manipulated and
exogenous variables (right).

3. Method

The measured data is represented by the tuple (zi, ui, wi) given by:

zi(k) =
[
Tzi (k), czi (k)

]ᵀ, ui(k) =
[
uwin(k), upwr(k)

]ᵀ, (1)

wi(k) =
[
nocc(k), Qsolar(k)

]ᵀ vi(k) =
[
Tbnd(k), Cbnd(k)

]ᵀ (2)

where nocc is the number of occupants, Qsol the solar radiation, Tbnd and Cbnd the temperature and
CO2 concentration at the boundaries. Assuming this tuple can be measured for N time samples, it is
possible to apply identification techniques to seek a data-driven models. Here, we propose to represent
the discrete-time thermal zone behavior by a Brunowski state-space form. The matrices are naturally
sparse, which eases the identification process in finding solutions:

A =



0 1 0 0 0 0
0 0 1 0 0 0

a11 a12 a13 a14 a15 a16

0 0 0 0 1 0
a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36


, B =



b11 b12

b21 b22

b31 b32

b41 b42

b51 b52

b61 b62


, C =

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 1

 (3)

Denote θ =
[
aij, bij, x0 ∈ Rnx , β ∈ Rny

]
the vector of parameters to identify with β and x0

representing an unknown offset and initial state. This vector is computed by resolving the following
least-square problem:

θ∗ = arg min
θ∈D

N

∑
k=1

[
yi(k, θ)− zi(k)

]2 (4)

subject to the parametrized model:

G
(
k, θ
)
=

{
xi(k + 1) = A

(
θ
)
xi(k) + Bu

(
θ
)
ui(k) + Bw

(
θ
)
wi(k) + Bv

(
θ
)
vi(k),

yi(k) = Cxi(k) + β
(
θ
) (5)

The zone model is given by:

F
(
k, xi, ui, wi, vi

)
= G

(
k, θ∗

)
(6)

The quality of the model is evaluated using the following specific index with Np the
prediction horizon:

εp(t) =
t+Np

∑
k=t

∥∥∥∥yt(k)− zt(k)
zt(k)

∥∥∥∥2

(7)



Proceedings 2018, 2, 1137 3 of 4

4. Experimental Results

The case study is the Nimbus building in Cork Institute of Technology (CIT). It has been
instrumented using TOPAs platform (see details in [6,7]). We focus on an open-space subdivided in
three zones. The thermal and comfort behaviors are modelled using data captured in winter. Figure 2
shows their εp index. Models are validated if total of occurences above εp = 20% are less than below.
For Np = 2 , both thermal and CO2 models are validated; for Np = 5 only the thermal ones is accurate
enough for predictive usage.
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(a) Occurence of εp for Np = 2
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(b) Occurence of εp for Np = 5

Figure 2. Validation of the modelling for the case-study.

The reliability of the models in real conditions is evaluated by running a DiMPC controller.
The reference temperature is Tre f = 22 ◦C and the comfort bounds is chosen as [18 ◦C; 26 ◦C].
In Figure 3, we compare the effect of the DiMPC control algorithm against baseline on zone
temperatures. Thanks to the proposed modelling procedure, the DiMPC was able to demonstrate
energy saving and improved thermal comfort. The same controller is applied during the summer
(Figure 4). Weather conditions are warmer, the heating system have been shut down and the windows
are the main actuators in this scenario. The temperature remains within the comfort bounds.
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Figure 3. Comparison between DiMPC (plain lines) and baseline (dash line) control algorithms during
winter: DiMPC is enabled during 14 h then disabled.
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Figure 4. Comparison between DiMPC (plain lines) and baseline (dash line) control algorithms during
summer: DiMPC is enabled during 40 h.

5. Conclusions

This paper has presented an initial analysis of a modeling approach to accurately develop (Di)MPC
technology for evalution in real buildings. The solution has been evaluated in a real use case, showing
the benifits of DiMPC for energy and comfort management. The approach is generic, in such a way
that it is applicable for different types of buildings and building zones.

Funding: This work is part of the TOPAS project (https://www.topas-eeb.eu/), which has received funding from
the European Unions Horizon 2020 research and innovation programme under the Grant Agreement No. 676760.
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