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Abstract: Ultrasonic sonar sensors are commonly used for contactless distance measurements in 
application areas such as automotive and mobile robotics. They can also be used to identify and 
classify sound reflecting objects. In the presented work, we classify simple sonar targets of different 
geometric shape and size. For this purpose, we built a test stand for echo measurements that 
facilitates defined arbitrary translation and rotation of the targets. Artificial neural networks 
(ANNs) with multiple hidden layers were used as classifiers and different features were evaluated. 
The focus was on two features that were derived from the echoes’ cross-correlation functions with 
their excitation chirp signals. We could distinguish different target geometries with our features and 
also evaluated the ANNs’ capabilities for size discrimination of targets with the same geometric 
shape. 
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1. Introduction 

Air-based ultrasonic sonar sensors are often used for obstacle avoidance and navigation 
purposes in application areas such as automotive, factory automation as well as mobile ground and 
airborne robotics [1]. In addition to identifying the distance to the closest obstacle, it is also favorable 
to be able to classify targets, which may then be used as landmarks for navigation and positioning. 
We used broadband chirp signals—contrary to most other sonar applications—as their cross-
correlation functions are narrow and they are better suited to deduce object features. Besides, 
echolocating bats are known to use broadband signals as soon as they have to resolve objects in front 
of vegetation [2] and it was also shown that they are able to classify different geometrical objects 
independent of their size [3]. As classifiers, ANNs are an option, which were used for ultrasonic 
targets in air [4] and for classification of spherical targets consisting of different materials in water 
[5]. In our work, we focus on classification of geometrically different shaped targets and the extraction 
of suitable sonar features. 

2. Targets 

We obtained and characterized ultrasound echoes from six different targets. Those were: two 
flat discs (30 mm and 50 mm radii, 4 mm thickness), two cylinders (30 mm and 50 mm radii, 60 mm 

and 100 mm heights, respectively) and two concave hemispheres (30 mm and 50 mm radii, 2 mm 
wall thickness). The three different geometric shapes have got characteristic acoustic fingerprints—
spectrum versus rotation angle plots (see Figure 1). Hence, they should be well-distinguishable and 
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were thus chosen. Detailed explanations regarding the target geometries’ acoustic properties can be 
found in [6]. 

   

(a) Disc, 50 mm radius 
(b) Cylinder, 50 mm radius, 
100 mm height 

(c) Concave hemisphere, 
50 mm radius 

Figure 1. Echo fingerprint for different target geometric shapes at a distance of 1 m, relative to speaker 
frequency characteristic at a distance of 1 m, measured with single-frequency sine bursts. 

3. Measurement Setup 

All measurements were performed in an anechoic chamber. The measurement setup (as shown 
in Figure 2) consisted of a two axis translation stage, a rotation stage on top of the translation stage 
on which the targets were attached, a 1/4” Bruel&Kjaer measurement microphone (Type 4939-A-011) 
with an amplifier (G.R.A.S. 12AK), a wideband electrostatic ultrasonic speaker (Senscomp 7000 
series) with a custom-built high voltage amplifier (0 V to 400 V, 0 kHz to 200 kHz) and a National 
Instruments data acquisition device for analog IO (NI-USB-6356, 1.25 MSa/s, 16 bit). The microphone 
and the speaker were mounted closely together (20 mm center distance) at the end of the x-axis 
translation stage. The targets, microphone and speaker were located 1 m above the floor. The setup 
was optimized so that there was no detectable direct echo from itself. Echoes that resulted from 
multiple reflections, appeared after the target echoes in the measured waveforms. 

 
Figure 2. Measurement setup. 

4. Measurement Procedure 

For the ANN training and test data, the targets were automatically moved along a grid and also 
rotated—x-direction (0.5 m to 1.8 m, 0.1 m steps); y-direction (−0.15 m to 0.15 m, 0.05 m steps); angles 
(−60° to 60°, 15° steps). We used downward modulated wideband chirp signals (150 kHz to 20 kHz, 
1 ms duration)—referred to as wb. Additionally, we also used narrowband chirp signals (nb, 52 kHz 
to 48 kHz, 1 ms duration) as we were also interested in the performance that may be achieved if we 
used a common narrowband ultrasonic sensor, such as a piezoelectric-based transducer. Chirp 
signals were chosen as they make it possible to gain information regarding a large portion of the 
spectrum from a single echo. From the complete recorded echoes, we selected a region of interest 
(ROI) of 3 ms for our feature calculations. The ROI positions were determined by the sound 
propagation distance to the target, which is known in this case. We also obtained true negative 
samples—non-target echoes—for proper ANN training. For this purpose, we added additional 
random time to the targets’ propagation delays for the non-target ROIs, in which echoes from 
multiple reflections off the measurement setup appear. 
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5. Neural Networks and Feature Engineering 

We designed our ANNs with four hidden layers in order to achieve good generalization and to 
avoid overfitting to the training data. The hidden layers comprised 10, 5, 5 and 3 neurons, respectively. 
A scaled conjugate gradient backpropagation algorithm with a cross entropy error function was 
used for training. For more information on ANNs, see [7]. We performed supervised learning as we 
knew the target positions as well as the target classes from the measurement procedure and could, thus, 
create labeled data sets. 

Tests with various features were performed, of which two are of special interest. The first of these 
features is the spectrogram of an echo’s cross-correlation function with its corresponding excitation 
chirp signal—referred to as FSP. For each target position, the according ROI was selected from the 
spectrogram. The resulting 2D array that contained the values, was flattened into a 1D array which 
was included into the final feature vector. The second feature is the logarithmic maximum value of the 
previously mentioned cross-correlation function, with an additional term to compensate for 
spherical spreading loss, which is based on the sonar equation—referred to as FTS. This feature is 
proportional to a rough estimate of a reflector’s target strength. In addition, we have also combined FSP 
and FTS—referred to as FC. 

A feature vector was chosen to consist of one of the features for five neighboring measurement 
grid positions. This is equivalent to a sonar sensor traveling by a target and taking five measurements. 
We have evaluated our ANNs by analyzing the confusion matrices and have deduced precision as well 
as recall values from those matrices. Precision and recall values are to be maximized towards 100% and 
are calculated for each target class as given: Precision =  no(true positives)no(false positives)  +  no(true positives) (1) 

Recall =  no(true positives)no(false negatives)  +  no(true positives) (2) 

6. Classification Results 

Results for precision and recall are summarized in Table 1. It can clearly be seen that our ANNs 
are able to classify the general geometric target shapes in most cases. Apart from that, good 
classification among different reflector sizes seems to be possible as well. Size discrimination of the 
hemispheres works best. Most ambiguous classifications can be observed for disc shaped targets. We 
assume that this happens if a disc is rotated in a way that only a weak echo is reflected back—see 
Figure 1 for comparison. In order to determine whether this is actually the case, further investigation 
is planned and may lead to optimization opportunities for good performance with all target shapes 
and sizes. The FTS can be used alone as well, but yields a lower performance in contrast to the 
spectrogram features, which show the best results at the cost of larger computational effort. Use of 
FC, the combination of FSP and FTS, does not seem to lead to further significantly improved 
performance. Also, narrowband signals were tested successfully, hence the use of piezoelectric 
transducers may be possible in the future. 

Classification was performed with a well-defined set of targets and true negatives that can be 
separated from the targets well. It thus remains to be investigated how robustly the system will perform 

if echoes from cluttered spaces are included, which may often be the case for applications outside the 
lab space. In this context, also the separation of echoes from multiple targets in close distance to each 
other is of interest and may require the inclusion of sophisticated sound source localization techniques. 
Here, an additional opportunity for improvement is to engineer and test more features in combination 
with feature evaluation tools such as the principal component analysis, which will presumably lead to 
a reduction of the necessary computational effort for ANN training and employment in comparison to 
the use of large spectrogram feature vectors. 
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Table 1. Comparison of precision and recall for different signals and features; format: (precision in %, 
recall in %), wb: wideband, nb: narrowband. 

Shape No Target Disc Cylinder Hemisphere 
wb, FSP 98.8, 100 94.5, 74.1 84.6, 92.5 91.5, 100 
nb, FSP 97.6, 98.8 96.1, 90.0 99.2, 100 98.3, 100 
wb, FTS 96.2, 98.6 95.3, 87.0 88.8, 97.9 97.0, 98.1 
nb, FSP 94.1, 96.7 81.9, 70.8 67.1, 97.0 96.3, 63.6 
wb, FTS 99.7, 99.7 97.1, 98.0 98.3, 97.4 99.1, 99.1 
nb, FSP 99.7, 98.6 95.8, 97.5 98.2, 95.0 94.0, 100 

dim. – r = 30mm r = 50mm r = 30mm r = 50mm r = 30mm r = 50mm 
wb, FSP 98.8, 100 83.3, 70.2 95.3, 69.5 73.1, 92.5 100, 92.6 98.2, 100 86.3, 100 
nb, FSP 97.6, 98.8 91.3, 76.4 80.7, 83.6 98.3, 93.4 93.5, 100 96.3, 100 100, 100 
wb, FTS 96.2, 98.6 69.6, 27.1 54.2, 78.9 93.5, 95.6 85.2, 100 93.8, 96.8 100, 77.1 
nb, FSP 94.1, 96.7 43.3, 25.5 49.1, 57.8 61.2, 98.1 75.9, 95.7 85.7, 29.0 72.9, 72.9 
wb, FTS 99.7, 99.7 84.4, 77.6 82.8, 90.6 98.2, 90.3 91.4, 98.1 98.2, 98.2 100, 100 
nb, FSP 99.7, 98.6 82.8, 84.2 79.0, 80.3 100, 89.5 96.9, 100 100, 100 90.3, 100 
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