
  

Proceedings 2018, 2, 1060; doi:10.3390/proceedings2131060 www.mdpi.com/journal/proceedings 

Proceedings 

PDMS-Au/Ag Nanocomposite Films as Highly 
Sensitive SERS Substrates † 
Attila Bonyár 1,*, Zsanett Izsold 1, Alexandra Borók 1, István Csarnovics 2, László Himics 3,  
Miklós Veres 3 and Gábor Harsányi 1 

1 Department of Electronics Technology, Budapest University of Technology and Economics,  
H-1111 Budapest, Hungary; izsoldzsanett@gmail.com (Z.I.); borokalek@gmail.com (A.B.); 
harsanyi@ett.bme.hu (G.H.) 

2 Department of Experimental Physics, University of Debrecen, H-4032 Debrecen, Hungary; 
csarnovics.istvan@science.unideb.hu 

3 Institute for Solid State Physics and Optics, Wigner Research Centre for Physics of the Hungarian 
Academy of Sciences, H-1121 Budapest, Hungary; himics.laszlo@wigner.mta.hu (L.H.); 
veres.miklos@wigner.mta.hu (M.V.) 

* Correspondence: bonyar@ett.bme.hu; Tel.: +36-1-463-2758 
† Presented at the Eurosensors 2018 Conference, Graz, Austria, 9–12 September 2018. 

Published: 26 November 2018 

Abstract: Polydimethylsiloxane (PDMS)–gold/silver nanoparticle composite films were synthetized 
in situ by using a simple method, which is based on the reduction of chloroauric acid (HAuCl4) or 
silver nitrate solution (AgNO3) by the PDMS membrane. A method to monitor the development of 
the plasmonic absorbance peak in situ (during the synthesis of the nanoparticles) is introduced in 
order to provide a convenient way to investigate the effect of the technological parameters on the 
position of the resulting peak. The resulting composite films were tested as SERS substrates at two 
excitation wavelengths (488 nm, 785 nm) and the preliminary results indicate that they are 
promising candidates for this application, with high sensitivities accompanied by cheap fabrication 
costs. 
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1. Introduction 

Surface enhanced Raman spectroscopy (SERS) is an analytical method which can significantly 
increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic 
nanoparticles (the enhancement factor can even reach the order of 1010–1011) [1]. However, depending 
on the plasmonic and geometrical properties of the nanostructures (particle size, shape, interparticle 
distance) and the operation wavelength, this enhancement can vary and optimization of the 
nanostructures are needed for outstanding enhancement. Hereby we investigate a straightforward 
approach for the fabrication of PDMS-Au/Ag nanocomposite films for this purpose. In this method, 
the silicon hydride (Si-H) groups of the residual curing agent in the PDMS elastomer act as reducing 
agents for direct nanoparticle synthesis on a PDMS membrane [2]. In this work, on the one hand, we 
aim to investigate the effect of synthesis parameters on this process in detail. For this purpose, a 
method is introduced which enables the direct real-time monitoring of the plasmonic peak during 
nanoparticle development in a microfluidic cell (Figure 1), with optical spectroscopy. In one of our 
previous works we demonstrated, that by increasing the temperature during nanoparticle synthesis, 
the incubation time needed to produce useable nanocomposites can be reduced from days to a couple 
of hours [3]. Our other major aim is to test these PDMS-Au/Ag nanocomposite films prepared at 
increased incubation temperatures as SERS substrates. 
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2. Materials and Methods 

2.1. PDMS-Au/Ag Nanocomposite Preparation 

The PDMS samples were prepared by mixing SYLGARD® 184 silicone elastomer with its 
corresponding curing agent in 1:5 mass ratio. The mixture was degassed in a vacuum exsiccator then 
poured to either a 3D printed mold to create microfluidic cells (Figure 1) or into a simple glass mold 
to form a 10 cm × 10 cm × 5 mm film, which was later cut to an approx. 2 cm × 2 cm pieces for the SERS 
experiments. To increase the speed of polymerization the molding form was placed to a ceramic oven 
for 45 min at 80 °C. The microfluidic cell was finalized by bonding the PDMS part to a corona 
discharge treated glass slide. For the preparation of PDMS-Au/Ag nanoparticle composite films 100 
μL of 2% (m/m) chloroauric acid (HAuCl4, from Sigma Aldrich (Saint Louis, MO, USA)) or 2% (m/m) 
silver nitrate solution (AgNO3, also from Sigma Aldrich) was pipetted on top of the PDMS blocks, or 
injected into the microfluidic cell, both shown in Figure 1. The microfluidic cells were hermetically 
sealed during incubation, also, the PDMS block samples were put into a hermetically sealed Petri 
dish, along with drops of water, to avoid the evaporation of the precursor solution during incubation 
at higher temperatures. After the given incubation time the samples were rinsed with deionized 
water, dried then were subjected to optical spectroscopy immediately. 

 
Figure 1. (a) The custom-designed PDMS microfluidic cell, which was used for the in situ monitoring 
of nanoparticle synthesis with optical spectroscopy Left: after a 2 days long silver nanoparticle 
synthesis; right: a freshly prepared cell. (b) PDMS-Ag (top row) and PDMS-Au (bottom row) 
nanocomposites prepared for the SERS experiments. 

2.2. Optical Spectroscopy 

For the real time monitoring of nanocomposite development and to measure the plasmon 
resonance spectra of the samples optical spectroscopy were performed with an Avantes Avaspec 
2048-4DT spectrometer and an Avantes Avalight DHS halogen light source between 350 nm and 750 
nm. For the evaluation of the obtained spectra, a custom-written Matlab program was used. 

2.3. SERS Measurements 

SERS measurements were performed with a Renishaw 1000 micro-Raman spectrometer with two 
excitation wavelengths at 488 nm and 785 nm. The diameter of the excitation spot was around 1 μm, 
which was monitored with a 50× objective. The spectra were recorded with 10 s integration time. The 
SERS enhancement of the composite samples was tested using a 1 mM benzophenon-isopropyl alcohol 
solution by dripping the same volume onto the samples so that it formed a thin layer on the surface. As 
a reference, the same amount of test solution was dripped and measured on a clean Si wafer. The two 
characteristic peaks at 1590 cm−1 and 1660 cm−1 were used for the evaluation of sample performance. 
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3. Results and discussion 

3.1. Real-Time Investigation of Nanocomposite Development 

The 3D plot of Figure 2 shows the development of the plasmonic peak of a PDMS-Ag 
nanocomposite film, monitored for 2 days in the microfluidic cell presented in Figure 1 with optical 
spectroscopy. The microfluidic cell provides great means to monitor the peak development at 
different incubation conditions, which enables the optimization of the synthesis parameters and the 
fine-tuning of the peak for SERS and/or LSPR (localized surface plasmon resonance) applications. 

  
(a) (b) 

Figure 2. (a) 3D plot of the development of the plasmonic absorbance peak of a PDMS-Ag 
nanocomposite film. (b) Absorbance spectra of the same composite film after given time periods. A 
baseline drift correction was applied at the data, based on the drift measured at 700 nm. 

3.2. SERS Results 

Figures 3 and 4 present sample SERS results, measured on PDMS-Au/Ag samples, which were 
prepared at higher incubation temperatures. The corresponding plasmonic absorbance spectra of two 
such samples can be seen in Figure 3a. The nanocomposite samples yielded substantial SERS signals 
at both excitation wavelengths (488 nm and 785 nm). Compared to the reference Raman signal 
measured on the Si wafer, the presented results show a 30×–60× increase in the signal at the same 
experimental conditions (thin fluid film of the test solution over the surface of the samples). 

  
(a) (b) 

Figure 3. (a) Normalized absorbance spectra of two PDMS-Ag/Au samples prepared at an increased 
incubation temperature of 65 °C for the SERS experiments. (b) Raman (Si reference) and SERS (PDMS-
Au nanocomposites) spectra of the of the benzophenon-isopropyl alcohol test solution measured with 
488 nm excitation. 
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Figure 4. (a) Raman (Si reference) and SERS (PDMS-Ag nanocomposites) spectra of the of the 
benzophenon-isopropyl alcohol test solution measured with 785 nm excitation. (b) Raman (Si 
reference) and SERS (PDMS-Au nanocomposites) spectra of the of the benzophenon-isopropyl alcohol 
test solution measured with 785 nm excitation. 

4. Conclusions 

Our presented results demonstrate that the PDMS-Au/Ag nanocomposites can be viable 
candidates for highly sensitive and cheap SERS substrates. The effect of the synthesis parameters on 
the SERS enhancement, results obtained at 514 nm excitation and performance comparison with 
commercially available SERS substrates (at fixed experimental conditions) will be presented in the 
full paper. 
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