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Abstract: This paper describes the synergetic use of earth observation satellites optical and radar 
data to detect flooded areas and explore the impacts of the flood event. A flash flood episode took 
place in May 2016, in the central-eastern part of West Thessaly (Central Greece). A Landsat-7 ETM+ 
and a Sentinel-1 SAR image were acquired. For Landsat-7 several water indices were applied and 
for the Sentinel-1 a threshold method was implemented. Furthermore, Sentinel-2 images were 
utilized so as to record the land use/cover of the flooded area. The inundated areas and the affected 
cultivations were delineated with high precision, and the financial effects were evaluated. 
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1. Introduction 

Flash floods are considered to be among the most frequent and destructive types of natural 
disasters worldwide, with significant consequences including: (a) human and animal life losses, (b) 
agricultural crops destruction and soil loss (c) damages of infrastructures, communication networks, 
and, (d) transport of sediment loads and pollutants [1–4]. Particularly, it is estimated that floods 
cause about 40% of the damages caused by all kind of natural disasters [5]. Therefore, mapping and 
monitoring flood events and their impacts are essential for any flood risk mitigation plan, disaster 
detection and compensation services [6]. This information is often difficult to produce using 
traditional techniques because water bodies can be fast moving as in floods tides and storm surges 
or may be inaccessible [7]. 

Earth observation (EO) data from space can provide valuable and timely information when one 
must respond to and mitigate emergencies such as floods. Satellite observations enable the 
acquisition of data for large and hard-to-reach areas, as well as provide continuous measurements 
[8]. Optical sensors detect energy naturally reflected or emitted by the earth’s surface in visible and 
infrared spectral bands. Where clouds, trees, and floating vegetation do not obscure the water 
surface, high-resolution sensors can provide good delineation of inundated areas [8]. 

Since the early 1970s, the Landsat program provides us with the longest continuous global 
measurements of the Earth’s surface, creating a historical collection unparalleled in quality, coverage 
and length. Additionally, the European Space Agency (ESA) through the Copernicus program offers 
accurate, timely and easily accessible SAR data of Sentinel-1 satellite system. Sentinel-2 (S2) is a new 
land monitoring and classification mission that provides high spatial resolution optical imagery to 
perform terrestrial observations with global coverage of the Earth’s land surface every five days 
[9,10]. Numerous studies using modern techniques of Landsat imagery have been used several 
different water indices to delineate flooded areas, such as the Normalized Difference Water Index 



Proceedings 2018, 2, 644 2 of 8 

 

(NDWI), the Modified Normalized Difference Water Index (MNDWI), the Tasseled Cap 
Transformation (TCT), the Difference Between Vegetation and Water index (DVW), the Index of Free 
Water (IFW), the Water Impoundment Index (WII), the Modified Water Index (MWI), the Red and 
Short Wave Infrared index (RSWIR) and many others [11–19]. 

The inability of optical sensors to procure clear images during cloudy weather conditions limits 
its application potential during flood events accompanied by clouds. In such cases SAR images 
which are not dependent on daytime and weather conditions, providing data through clouds and 
hazy atmospheric circumstances as well as their ability to differentiate waterlogged and dry land, 
render them quite valuable in flood occasions [1,4]. Sentinel-1 (S1) is a Synthetic Aperture Radar 
(SAR) mission of the Copernicus Program. The contribution of S1 to the application of flood 
mapping arises from the sensitivity of the backscatter signal to open water [4,9,20,21]. 

The object of this study is to apply remote sensing techniques, using optical and SAR open 
source data for monitoring and evaluating the impacts of a natural disaster. The flash flood event 
took place from 20 to 22 May 2016, following an intense and heavy rainfall that occurred in the 
central-eastern part of West Thessaly, in Central Greece, including a part of the Thessalian plain, 
which is characterized by intensive agricultural activity. More precisely, it is mainly represented by 
summer cultivations (cotton, corn etc.) with high yields and financial importance (with significant 
subsidies). A Landsat-7 ETM+ (L7) image, acquired one day after the phenomenon at 23rd of May 
and two Sentinel-1 SAR images (S1), acquired at 21st of May, were processed. For L7 the TCT, the 
MNDW, the DVW and the RSWIR indices, were applied and tested. Their results were compared, 
and from their analysis, the inundated area was delineated. As far as it concerns the S1 SAR data, a 
Level-1 Ground Range Detected (GRD) products have been utilized and a method that sets a 
threshold value (that is established manually) of radar backscatter, which is followed by a binary 
algorithm to determine whether a given raster pixel is flooded or not, was implemented. Finally, 
four Sentinel-2 (S2) images were acquired so as to map the land use/cover and distinguish the 
existing crop types of the flooded area. 

2. Study Area—Background 

2.1. Study Area 

The study area lies between 39°11′ to 39°58′ N and 21°52′ to 22°45′ E (Figure 1), in the Pinios 
river basin (GR16), the largest catchment in the Thessaly Water District (GR08) with an area of 10,700 
km2. The Thessaly plain lies in the center of the catchment and it is mostly a flat terrain which was 
subsequently filled with alluvial deposits that form the largest and among the most productive 
agricultural lands in Greece [22]. 

Pinios river originates from the Pindus sierra and empties into the Aegean Sea. The affected 
areas reside in Karditsa, Larissa and Trikala prefectures (geographic administrative region of 
Thessaly). 

2.2. Background—Intensity of Rainfall from 20 to 22 May 2016 

According to the EU Floods Directive (2007/60/EC) Preliminary Flood Risk Assessment that was 
implemented by the Ministry of Environment and Energy of Greece, several notable historical floods 
had been documented, such as those that occurred on 4 June 1907; 27 October 1980; 23 March 1987; 
22 October 1994, while 31.7% of the total area of the Thessaly Water District is characterized as an 
area of potential significant flood risk [23]. The recorded rainfall from 20 to 22 of May 2016 for 
Kalabaka, Trikala and Karditsa station was 78.2, 87.8 and 91.8, respectively. The intense storm lasted 
from noon on the 20th of May until the dawn on the 22nd while its peak was reached on the 21st of 
May. 

 



Proceedings 2018, 2, 644 3 of 8 

 

  

Figure 1. The study area located in Central Greece, with its principal geomorphological and 
hydrological characteristics (Coordinate System: Greek Grid). 

3. Materials and Methodology 

3.1. Materials 

Several data sets were examined to be procured for the purpose of this study. A Level 1T L7 
image (path/row: 184/33), was acquired from the USGS Earth Explorer (EE) tool on the 23rd of May, 
hence the next daytime of the two-day flood event [24]. As well, S1 and S2 datasets were provided 
via ESA’s Open Access Hub [25]. S1 SAR data was an L1 GRD, high resolution (10 m) Interferometric 
Wide (IW) image, obtained from C-band during the flood, on the 21st of May (Time 07:05:10 p.m.). 
Moreover, four S2 images were used, from December 2015 until August 2016, to cover all the crops 
growth stages for the creation of the land use/cover classification map. The Digital image processing 
and analysis of the satellite data were carried out using ENVI (v.5.3) and SNAP (v.5.0) software, 
while the manipulation of the spatial information was made using ArcGIS (v.10.2). 

3.2. Methodology 

The intervening atmosphere between the satellite and the Earth’s surface can degrade the 
quality of the remote sensing data, by altering the intensity of the spectral response of ground 
features received at the sensor from their actual spectral characteristics. As atmospheric conditions 
can vary both spatially and temporally standardised atmospheric models, such as those provided by 
QUAC atmospheric correction model in ENVI is crucial for the atmospheric correction of the L7 
image [6,26]. In the present study, three different processing methodologies were followed for the 
three-different kind of satellite data used (Figure 2). 

The pre-processing step of the L7 ETM+ image included the gap initially filling that Scan Line 
Corrector (SLC) failure creates. For that reason, Landsat gap fill plugin of ENVI was used to retrieve 
the approximately 22% of data loss. This process deals with the implementation of a gap mask for 
each band that points the missing data in the scan gap and classifies regions as 0 and the existing 
data as 1. Then, the Digital Number values of the L7 image have been converted to Top of 
Atmosphere reflectance and then to surface reflectance. 
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The basic processing step concerned the calculation of the four water indices, the MNDWI, the 
TCT, the DVW and the RSWIR. MNDWI enhances open water features while suppressing noise 
from built-up land, vegetation, and soil (Figure 3a). Xu (2006) reported that the MNDWI produced 
better results than the NDW index, in enhancing and extracting water from a background that is 
dominated by build-up land areas [12,17]. The TCT is a useful tool for compressing spectral data into 
a few bands associated with physical scene characteristics [14,15]. The new composite images 
represent the brightness of each pixel, the degree of greenness/yellowness of vegetation and the 
wetness which is correlated to soil moisture, water, and other moist features. The other additional 
components contain image noise and atmospheric influences, such as clouds, haze, sun angle 
differences etc. The third component that is relating to the tasseled cap wetness (TCW) has been 
used as a tool for flooded area delineation (Figure 3b). Furthermore, the DVW and RSWIR indices 
were implemented. The first functions by subtracting the simple Normalized Difference Water Index 
(NDWI) from the Normalized Difference Vegetation Index (NDVI) [27], while the second uses the 
Red and Short Wave Infrared (SWIR) bands in its equation (Figure 3c,d). 

 
Figure 2. Flow-chart of the implemented methodology. 
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(a) (b) 

 
(c) (d) 

Figure 3. The four implemented water indices, (a) MNDWI, (b) TCW, (c) DVW and (d) RSWIR. 

The S1 SAR image obtained from Sentinel-1C-band comprises an image which was acquired at 
the early stages of the flood. The processing method sets a threshold value (manually established) of 
radar backscatter which is followed by a binary algorithm (band math equation) to determine 
whether a given raster pixel is flooded or not. The data processing of the S1 VV polarization SAR 
image followed specific steps: (a) subset of the image to reduce the size of the data and make it more 
easily managed, (b) calibration of the images, (c) implementation of speckle filter to remove the “salt 
and pepper” texture of the image, (d) finally, a threshold was selected, analyzing first the histogram 
of the filtered backscatter coefficient. The histogram shows a peak of different magnitude. Low 
values of the backscatter correspond to the water, and high values correspond to the non-water 
class. To binarize the image band arithmetic was applied, putting as logical value (true) for values 
less than the chosen threshold and false for higher values, producing the final “Water” image. 

As far as it concerns the four S2 images, the atmospheric correction was applied to convert the 
Top-of-Atmosphere reflectance values (TOA) to Bottom-of-Atmosphere reflectance values (BOA) 
using ESA’s Sen2Cor plugin. Then, a layer stack of the four images was made and a supervised 
maximum likelihood classification method was implemented, utilizing approximately 200 sampling 
points. The overall accuracy of the classification was about 89%, due to high homogeneity of the 
different land use/cover types of the area. 

4. Results-Discussion 

During floods, timely and detailed situation reports are required by the disaster management 
authorities to locate and identify the affected areas and to implement the corresponding damage 
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mitigation; this is the most delicate management category since it involves rescue operations and the 
safety of people and property. Many of the existing and future satellite missions and airborne 
platforms provide rich data with great potential for enhanced monitoring, measuring and mapping 
of floods. 

In our study case, spatial and temporal dynamics of the flooding were revealed, calculated and 
analyzed using L7 and S1 data. Thence, the information exported from the above-mentioned satellite 
systems was manipulated and contrasted with S2 output and public-sector data. 

As already mentioned, the L7 image was acquired on 23 May 2016, one day after the expiration 
of the episode. Hence, there was probably a slight reduction as far as the total surface area covered 
by water is concerned, during 22–23 May 2016. 

The flood map depicted that during 20–22 May 2016 an area of 5381.3 ha was inundated in the 
study site (Figure 3). Visual inspection of Figure 3 illustrates that MNDWI (Figure 3a) and TCW 
index (Figure 3b) resulted in a higher accuracy of surface water mapping compared to RSWIR 
(Figure 3d) and DVW (Figure 3c). 

S1 satellite mission data are quite valuable for flood monitoring and damage assessment. 
However, at this case study, the outputs of water extraction using S1 data represent solely numerous 
dispersed spots in view of the fact that the image was obtained at the early/middle stages of the 
phenomenon. Specifically, the transformation of the precipitation to runoff and thence to flood 
routing, requires a certain period that is related to the hydrological and geomorphological 
characteristics of the watershed and the like. Thus, the major part of the study area was not under 
water at that time. 

 

Figure 4. The land use/cover classified map with the overlapping of the extracted flooded area. 

The classified land use/cover map derived from the four S2 multi-seasonal (Figure 4) reveals 
that the flood affected approximately 3885.7 ha (72.2%) of summer crops (green color), 399.5 ha 
(7.4%) of winter crops (yellow color), 54.4 ha (1.0%) of fodder crops (light-green color), 446.1 ha 
(8.3%) of urban areas and roads (black color), 516.8 ha (9.6%) of nude soils and rocks. Furthermore, 
the above-mentioned data were compared to the elaborated public-sector data. More precisely, the 
Greek Agricultural Insurance Organization (ELGA) covered an area of 3823.8 ha which mainly 
consists of summer and all-season cultivars such as cotton (79%), wheat (12%), corn (4%) and so on. 
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The compensation recipients received the total amount of 844,563.8 €, that was mostly distributed to 
cotton (66%), wheat (11%), maize (6%), industrial tomatoes (4%), melon (6%) and so forth. 

The results of this research indicate that there is a direct correlation between the flooded area 
that was delineated from the water indices and the area calculated and compensated by ELGA. The 
delayed acquisition of L7 data (one day after the phenomenon), the accuracy of crop classification 
(approximately 89%) and the fact that compensations are only given under certain circumstances, 
namely the total damaged production is greater than 20%, the total annual compensation of each 
parcel is no greater than 80% etc. [28], justify the small differentiation between them. 

5. Conclusions 

In a nutshell, remotely sensed data are increasingly being used for flood extent mapping and 
damage assessment. Optical sensor data are readily available free of charge and can be used with 
available well-defined, robust data processing techniques. Optical sensors cannot penetrate clouds. 
Effective and timely flood warning can be attained with frequent radar observations of flood-prone 
areas through cloud cover. However, radar data can be more difficult to interpret and analyze. 

The visual interpretation analysis of four different water indices MNDWI, TCW, DVW and 
RSWIR of L7, shows that all indexes were very accurate at classifying water pixels, with very high 
accuracies. The MNDWI and RSWIR indices appear to be a little more efficient for delineating water 
bodies during floods. 

The study also provides detailed information about the affected land use/land cover in flooded 
area. The use of multi-seasonal S2 data to classify crop types was more than satisfactory. 
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