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Abstract: The consideration of a theoretical probability distribution regarding the annual 
cumulative discharge will provide a significant opportunity to characterize the intensity of the 
hydrological drought. However, the matching between the observed probabilities and the adopted 
theoretical probability distribution can not be identical. Hence, in this work this matching is 
achieved by using a fuzzy regression based methodology and the attributes of the log-normal 
distribution. Finally, an ascending procedure to classify the intensity of hydrological drought is 
proposed and it is applied in case of the Evros River. 
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1. Introduction 

Drought must be considered as a relative, rather than absolute condition. It occurs in both high 
and low rainfall [1]. In other words, drought occurs when the water availability is below the 
canonical values which very often are described by the mean value and the standard deviation. 
Several types of droughts exist, while in this work the hydrological drought is studied. 

The Standardized Precipitation Index, known as SPI, seems to be the most widely-used 
compared with the existing simple indices to classify the drought events [2]. In brief, the 
computation of the SPI involves fitting a gamma probability density function and thereafter the 
cumulative probability distribution is transformed into the standard normal distribution to yield the 
SPI [2]. Hence, starting initially from a probabilistic approach, many standardized indices to drought 
(SPI [2], RDI [3], SDI [4] etc.) conclude to an index which in fact, it is the standardized normal 
variable Z. 

In this work, the examined hydrological variable is the annual cumulative discharge. Firstly, a 
hybrid fuzzy probabilistic approach is proposed in order to improve the couple between the 
observed probabilities and the adopted theoretical probability distribution. Secondly, based on the 
widely-used standardized normal thresholds to drought, the corresponding (fuzzy) annual 
cumulative discharge thresholds are determined. Thirdly, the (crisp) observed cumulative annual 
discharge is compared with these fuzzy thresholds in order to classify the drought. 
  



Proceedings 2018, 2, 643 2 of 9 

 

2. Proposed Methodology 

2.1. Fundamentals of Fuzzy Sets and Logic 

A fuzzy set A on a universe set X is a mapping →: [0,1]A X , assigning to each element ∈x X  a 
degree of membership ≤ ≤0 ( ) 1A x . The membership function A(x) is also defined as ( )Aμ x . 

If Α is a fuzzy set, by α-cuts (∈ 0,1a  we define the crisp sets [5] with the following property: 

{ }= ∈ ≥[ ] : ( )A α x X A x α  (1) 

The 0-cut can be defined as follows: 

= ∈ >[0] { : ( ) 0}A x X A x  (2) 

It is worth noting that by using the α-cut concept we can move from the fuzzy sets to the 
conventional crisp mathematical methodologies. 

A special kind of fuzzy sets is the fuzzy numbers. In this work, fuzzy symmetrical triangular 
numbers are used which are special kinds of fuzzy numbers. The fuzzy symmetrical triangular 
numbers have the following membership function: 

( )
 −
 − − ≤ ≤ += 



1 ,

0,
A

x
if x x wμ x w

otherwise

a
a a  (3) 

in which a is the centre and w the spreads of the fuzzy number (Figure 1). 

 
Figure 1. Fuzzy triangular symmetrical number. 

2.2. Utilization of the Observed Probabilities by Using Fuzzy Regression in Case of Log Normal Distribution 

Let an historical sample. The rank order method involves ordering the data from the largest 
hydrological value to the smallest hydrological value, assigning a rank of 1 to the largest value and a 
rank of N to the smallest value. Based on the Weibull 1939 empirical distribution to compute the 
plotting position probabilities, the cumulative exceedance probability can be assessed as follow: 

( ) mP Q q
Ν

≥ =
+ 1

 (4) 

Therefore, the cumulative probability of non exceedance probability can be determined as 
follow [6]: 

( ) mP Q q
Ν

< = −
+

1
1

 (5) 

Let now the log-normal theoretical probability distribution. To simplify the procedure, it is 
well-known that in case that the log-normal distribution is well-fitted to the observations, then the 
normal distribution with log-transformed data can be used instead of the lognormal distribution; 
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which simply means that log-transformed data are implemented instead of the raw data and hence, 
the new auxiliary variable y, is normally distributed: 

=ln  yTj Tjq  (6) 

Subsequently, based on the standardized normal variable Z of the normal distribution it holds: 

= = + ⋅ = + ⋅
Τ, j Τ, j
Ζ Ζln  Tj Tj yq y y s λ ζ  (7) 

In which as λ, ζ state the mean value and the standard deviation of the log transformed variable 
y correspondingly. 

The critical points of the proposed methodology are the following next: 

• Based on the observed probabilities, the standardized normal variable Z can be determined for 
each data. 

• Based on Equation (7), a fuzzy linear regression model is implemented in order to determine a 
fuzzy relationship between the natural log of the cumulative discharge and the normalized variable Z 
(which corresponds to a probability). In addition, based on the fuzzy regression procedure, a 
fuzzy estimation regarding the mean value and the standard deviation of the log-transformed 
sample is achieved simultaneously [7]: 

= + ⋅ = + ⋅  
Τ, j Τ, j
Ζ Ζ Tj yy y s λ ζ  (8) 

It should be clarified that since fuzzy symmetrical triangular numbers are selected as fuzzy 
coefficients hence, the mean value and the standard deviation are estimated as fuzzy symmetrical 
triangular numbers. 

The uncertainty of the matching between the observed probabilities and the adopted theoretical 
probability distribution can be treated by using the fuzzy regression of Tanaka (1987) and hence, all 
the observed data will be included in the produced fuzzy band [8]. 

• The suitability of the proposed model can be estimated based on the magnitude of the fuzziness 
and furthermore by using mathematical distance norms to deal with the comparison between 
the unbiased estimators and the fuzzy estimation of the mean value and the standard deviation. 

Considering the model of fuzzy regression itself let us provide some details. Although the 
standardized normal variable Z (independent variable) and the value of random variable 
(dependent variable) of the historical sample takes only crisp values, the fuzziness arises from the 
inclusion constraints that is, from the requirement that all the data must be included in the produced 
fuzzy band. In other words this means that the fuzziness is generated from the (expected) no 
identical matching between the theoretical probability distribution (in this article the log normal 
distribution) and the observed probabilities. 

According to the extension principle, in case of fuzzy symmetrical triangular numbers as 
coefficients, the function jy will be also a fuzzy triangular number with the following centre (ya,j) and 

width (wyj) [5,9]: 

Centre: = + ⋅
Τ, j
Ζjy λ ζa a a  (9a) 

Width: = + ⋅
Τ, j
Ζyj λ ζw w w  (9b) 

In which as , ,jy λ ζa a a state the central values of the corresponding variables and as 

, ,yj λ ζw w w the corresponding spreads are meant. 

The concept of inclusion is used to express the inclusion constraints. Thus, the inclusion of a 
fuzzy set A to the fuzzy set B with the associated degree ≤ ≤0 1h  is defined as follow: 

  ⊆     A h B h  (10) 
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A physical interpretation of the level h is that an observation yj is contained in the support 
interval of the corresponding fuzzy estimate, which has a degree of membership greater than hj. The 
degree of fit of the estimated model to the entire data set is defined as the minimum of all these hj, 
which is denoted as h [10]. 

The produced fuzzy band will contain all the observed data: 
L R
h, j h, j

 ∈  ,jy y y  (11) 

By taking into account the fuzzy arithmetic, for a selected level h, the inclusion constraints, in 
case that the decision variables (fuzzy coefficients) are selected to be fuzzy symmetrical triangular 
numbers, are equivalent to (e.g., [9,11,12]): 

( ) ( )( )
( ) ( )( )

L
h,j j

R
h, j j

q

y q




+ ⋅ − − + = ≤


+ ⋅ + − + = ≥


≥

Τ , Τ ,

Τ , Τ ,

Ι int

Ζ 1 Ζ ln

Ζ 1 Ζ ln

, 0

j λ ζ j

j λ ζ j

λ ζ

nclusion Constra s

λ ζ h w w y

λ ζ h w w

w w

a a

a a

 (12) 

Since the fuzzy regression model of Tanaka (1987) is transformed to a constrained optimization 
problem, the assessment of the suitability of the model is based on the produced fuzzy band. 
Therefore, a significant small fuzzy band indicates a proper approach. Thus, Tanaka (1987) 
suggested the minimization of the sum of the produced fuzzy semi-spreads for all the data: 

= =

  
= = ⋅ +  

  
  Τ, j

Ζ
1 1

min
M M

yj λ ζ
j j

J w M w w  (Objective function) (13) 

where M is the number of the observed data. 
Based on the inclusion constraints, the produced fuzzy band must include all the observed data 

and this is one of the main advantages of the implementation of the fuzzy regression. 
Two criteria are proposed in order to check the suitability of the achieved solution. The first one 

is sum of the produced fuzzy semi-spreads, J which indicates the fuzziness of the model. The second 
criterion of suitability, F, which examines how close is the central values of the mean value and the 
standard deviation to the unbiased (usual statistical) estimation of the same variables for the ln- 
transformed sample, λ ζˆ ˆ, : 

( ) ( )F λ λ ζ ζ= − + −2 2ˆ ˆ
a a  (14) 

2.3. Categorization to Hydrogical Drough Based on the Return Period 

As aforementioned, the thresholds of Z are used to define the thresholds of several drought 
categories (Table 1). In this article, based on the produced fuzzy curve (Equation (8)), the 
corresponding cumulative annual discharges, which can be seen as thresholds, are determined. It 
should be clarified that since the log–normal distribution is used (instead of the Gamma 
distribution), the normalized variable Z corresponds to a log-transformed cumulative discharge. The 
thresholds of Table 1 correspond to a fuzzy log-transformed cumulative discharge (based on 
Equation (8)) which can be compared with the current real log-transformed value of the cumulative 
discharge. Therefore, in this article the (fuzzy) thresholds of the annual cumulative discharge, ln kV  
(considering the k threshold) are compared with the (crisp) observed annual cumulative discharge. 
Even if, there are many measures to compare fuzzy numbers, there are not all of them suitable to 
compare a fuzzy number with a crisp number. To address this problematic the reliability measure of 
Ganoulis, 2004 is adopted. 
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Table 1. Classification of hydrological drought based on the random variable Z. 

Category Description Criterion 
0 Non-drought Z ≥ 0.0 
1 Mild drought −1.0 ≤ Z<0.0 
2 Moderate drought −1.5 ≤ Z<−1.0 
3 Severe drought −2.0 ≤ Z<−1.5 
4 Extreme drought Z<−2.0 

Let a system which has a resistance R and a load L as fuzzy numbers. A reliability measure or a 
safety margin of the system may be defined as being the difference between load and resistance. This 
is also a fuzzy number given by [13]. 

M R L= −    (15) 

Hence, Ganoulis, 2004 has proposed a fuzzy measure of risk, r , which is defined as the region 
of the fuzzy safety margin, where values of M  are negative. Mathematically, this may be expressed 
as follows: 

≤=







0

Μ

( )

( )

M
m

m dm
r

m dm

μ
μ

 (16) 

Let us return to the examined problem. Hence, the authors propose a measure ,i kG , to indicate 
the degree according to which the examined hydrological year, i, has a cumulative annual discharge, 
ln iV greater than the examined fuzzy threshold of drought k, kVln . It may be considered (Figure 2): 

( )

( )

( )

( )

( )

( )
≤ ≥ ≥= = − =
  

  

, , ,
ln ln ln ln ln ln

, ,

, , ,

(ln ) ln (ln ) ln (ln ) ln
1 , ,

(ln ) ln (ln ) ln (ln ) ln

thresh k thresh k thresh k
V V V V V Vk i k i k i

i k i k

thresh k thresh k thresh k

V d V V d V V d V
G S

V d V V d V V d V

μ μ μ

μ μ μ
 (17) 

By the same way, a degree, ,i kS , according to which the examined hydrological year, i, has a 
cumulative annual discharge smaller than the examined fuzzy threshold of drought k can be 
considered. In Figure 2 the grey hatched area (which is marked with (1)) denotes the numerator 
whilst the dominator is equal to the total area. For instance, regarding the hydrological year 
1985–1986, G85–86,Z =−1 =1 and S85–86,Z = 0 = 0.8487>0.5. 

 
Figure 2. Measure value resulting from the ratio of the hatched area to the total area is less than 0.50 
for the year 1985–1986. 

3. Implementation of the Proposed Methodology: Annual Cumulative Streamflow Time 
Sequence 

The case under investigationis the northern region of Prefecture Evros (Figure 3). The annual 
cumulative streamflow, which is derived from the monthly discharges of Evros River at 
Pythio’sbridge, is studied. Evros River (Maritsa or Meric) is one of the largest river of Balcan 

1 
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Peninsula in terms of length, since it crosses the Bulgarian, Greek and Turkish borders. It rises in the 
Rila Mountains in Western Bulgaria and has its outlet in the Aegean Sea. It serves as a natural 
borderline between Greece and Turkey [14]. Its total watershed area is equal to 53,000 Km2, while the 
6% of this is in Greek territory. 

 
Figure 3. Transboundary Evros river and its tributaries. The examined data are derived from 
Pythio’s bridge (41°21′43.51″ N 26°37′51.67″ E) (from Angelidis et al., 2010). 

Methodology Steps 

The proposed methodology is implemented using the following steps: 

1. Based on the monthly discharges, the annual cumulative volumes of streamflow are calculated 
and then they are transformed to logarithmic values. 

2. Based on the cumulative empirical (observed) distribution, the standardized normal variable Z 
is calculated for each examined hydrological year. 

3. The fuzzy linear regression model of Tanaka (1987) [9] is applied (Figure 4) between the 
standardized normal random variable Z and the log-transformed annual cumulative discharge. 
The produced fuzzy coefficients constitute fuzzy symmetrical triangular numbers. Its values 
can be seen as a fuzzy assessment of the mean value and the standard deviation. The fuzzy 
relation that was determined is (Figure 4): 

( ) ( )Tj TjL L
y Z= + 22.72,  0.081  0.51,  0.172  (18) 

in which the brackets state the fuzzy symmetrical triangular numbers (which are a special case 
of the L-fuzzy numbers) and within the bracket the first term symbolizes the central value and 
the second term the spreads of the aforementioned fuzzy numbers. 

4. The suitability is checked according to the value of the objective function, J and the measure 
according to Equation (14). The objective function equal to J =4.08 and as it can be seen from 
Figure 4 the uncertainty is not no functional. The unbiased estimation of the mean value and the 
standard deviation for the logs transformed sample are λ ζ= =ˆ ˆ22.80, 0.44  and therefore, the 
centers of the fuzzy coefficients are close to the unbiased estimations. 

( ) ( ) ( ) ( )F λ λ ζ ζ= − + − = − + − =
2 2 2 2

22.72 2ˆ ˆ 0.442.80 0 0 6.5 01 .1a a  (19) 

5. Based on drought classification (Table 1) the ln of the annual cumulative discharge which 
correspond to the normalised variable Z equal to −2, −1.5, −1 and 0 (Table 1) are calculated based 
on Equation (18). Therefore, according to the corresponding values of Z, the fuzzy thresholds of 
drought are determined based on the produced fuzzy curve. 

6. The observed cumulative annual discharge is compared with the aforementioned thresholds to 
drought. From a mathematical point of view the observed cumulative annual discharges are 

GCS_GGRS_1987 
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crisp numbers whilst the thresholds are fuzzy numbers. The comparison is started from the 
lowest to the upper values, that is, by following an ascending procedure. 

 
Figure 4. Observed data, fuzzy and conventional (crisp) regression between the annual cumulative 
logarithmic streamflow values and the standardised random variable Z. 

There also some cases where the comparison between the fuzzy threshold and the crisp annual 
cumulative discharge is not precise. Hence the following criterion is adopted in this analysis: 

ln iV  overcomes ln kV  if it holds: 
( )

( )
≥= >




,
ln n

,

,

(ln ) ln
0.5

(ln ) ln

thresh k
V l Vi k

i k

thresh k

V d V
G

V d V

μ

μ
 (20) 

In Table 2, the results of the above implementation steps are presented. It is observable that that 
because of the overlapping of the fuzzy lnVk values (Figure 5), the frontiers between the categories 
are overlapped to some degree. In any case it seems more reasonable to adopt fuzzy thresholds 
between the categories to drought, compare with crisp, as the conventional methodology do. It is 
worth noting that although there are some cases where the comparison between the fuzzy threshold 
and the crisp annual cumulative discharge is not precise, in most of them, the Gi,k index has values 
which are discernible different from 0.5. 

 
Figure 5. Fuzzy thresholds of drought regarding the values of Z (presented in Table 1) and the (crisp) 
annual cumulative discharge for the hydrological year, 94–95 and 93–94. 
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Table 2. Drought classification based on the fuzzy measure Gi,k and Si,k. 

Comparison of Crisp and Fuzzy Streamflow Values 
Hydrological 

Year 
LnVi(m3) 

Greater than the Lower Thresh. of 
the Category 

Smaller than the Upper 
Thresh. of the Category 

Drought 
Categories 

1985–1986 22.6826542 1 0.8787 mild drought 
1986–1987 22.7118034 1 0.5860 mild drought 
1987–1988 22.7391331 0.7188 1 mildly wet 
1988–1989 22.5682508 1 1 mild drought 
1989–1990 22.3941092 0.9608 1 mild drought 
1990–1991 22.7059660 1 0.6472 mild drought 
1991–1992 22.5434611 1 1 mild drought 
1992–1993 22.4211663 0.9855 1 mild drought 
1993–1994 22.1499070 0.9075 0.7112 moderate drought 
1994–1995 22.8424773 1 1 mildly wet 
1995–1996 23.1777925 1 0.6780 mildly wet 
1997–1998 23.5255678 0.6216 0.8750 severely wet 
1998–1999 23.3953991 0.9422 0.7262 moderately wet 
1999–2000 22.6456004 1 0.9950 mild drought 
2000–2001 22.3591526 0.9118 1 mild drought 
2001–2002 22.4334485 0.9928 1 mild drought 
2003–2004 22.8287708 1 1 mildly wet 
2004–2005 23.6016702 0.7887 0.7688 severely wet 
2005–2006 23.6618808 0.8896 0.6638 severely wet 
2006–2007 22.6549724 1 0.9780 mild drought 

4. Concluding Remarks 

The uncertainty of the coupling between the observed probabilities and the adopted theoretical 
probability distribution can be treated by using the fuzzy regression model of Tanaka (1987), where 
all the observed data are included in the produced fuzzy band. By using the log-normal probability 
distribution together with the fuzzy regression, an estimation of the mean value and the standard 
deviation can be achieved simultaneously. As it is seen from the case study, two criterion of 
suitability are established in order to check the suitability of the adopted theoretical probability 
density with fuzzy numbers as parameters. The first criterion of suitability is based on the width of 
the produced fuzzy band and the second is based on the distance between the unbiased estimation 
of the mean value and the standard deviation with the central values of the estimated fuzzy 
quantities. 

Hence, by using the standardized indices, Z, to categorize the drought, the corresponding 
thresholds to drought can be determined as fuzzy numbers. The proposed methodology is 
successfully applied in case of the Evros river regarding the cumulative annual discharge. The 
observed cumulative annual discharge is compared with the aforementioned thresholds to drought. 
This comparison is taken place by using the proposed measure of comparison between fuzzy 
number and crisp number, which exploits all the information of the membership function. Finally, 
an efficient classification to drought is achieved following the proposed methodology although the 
fuzziness is taken into account. 
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