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Abstract: The aim of this work is to identify and present small scale sustainable urban stormwater 
management techniques that can be implemented by local authorities into public spaces. We 
present areas that bioretention and other Sustainable Urban Drainage Systems (SuDS) can be 
adopted, causing the transformation of public areas into multifunctional spaces. 
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1. Introduction 

Flood protection and drainage rank highly among the needs of all societies, accompanied with 
the provision of safe drinking water and sanitation facilities. Since early civilization, various means 
have been used to provide these essential services. When it comes to the goals of designing drainage 
systems, they have remained the same for many centuries; to guide the water as quickly as possible 
away from the area of rainfall thus cities, into rivers or the sea [1]. The rapid conveyance of the 
runoff and its direct discharge to the recipients, contributes to the disturbance of the hydrologic 
cycle by diminishing the volume of soil infiltration, evapotranspiration, and surface and subsurface 
flows, resulting to the reduction of aquifer level, the increase of runoff and the deterioration of the 
recipients’ quality. Moreover, those systems cause a false sense of safety to the public that do not 
consider that all pipe systems are designed to withstand certain rainfall intensity and duration. 

Over the last decades, it is becoming more and more recognized by the authorities, 
professionals and the scientific community, that the philosophy behind the construction of urban 
drainage systems should change. Climate change has played an important part to this because, as 
reported by the IPCC [2] and has already been observed in many countries, climate change effects 
into less frequent and more intense rainfalls. The continuously rising intensity of rainfalls, lead to the 
increasing inefficiency of conventional drainage systems for handling the stormwater and thus cause 
more frequent and intense urban floods. Due to this recognition, a growing trend has been 
developed towards managing water in a more sustainable way, from the use of conventional 
drainage systems to the use of Sustainable Drainage Systems (SuDS). The goal of this new approach 
is to mimic the natural behavior and the processes of the water cycle and to incorporate them into 
the urban environment. Energy efficiency, biodiversity, social amenity, quality of water and all 
aspects of sustainability are considered along with the quantity of runoff and moreover, storm water 
is considered as a precious resource instead of a waste product, a problem and a nuisance.  

Although their benefits have been extendedly recorded, their wide-scale implementation has 
been limited especially in Mediterranean cities [3,4], as most of cities are still investing heavily in the 



Proceedings 2018, 2, 632 2 of 7 

conventional approach [5]. Insights from different studies on integrated urban water management, 
reveal that barriers are mainly socio-institutional rather than technical [5] and recommendations call 
for collaborative planning and multi-stakeholder platforms that involve civil society [6,7].  

The main purpose of this paper is to present small scale SuDS techniques that can be 
implemented by local authorities in public spaces, in order to promote more sustainable practices 
regarding stormwater management. Those techniques may be an alternative or supplementary to 
the conventional approach of urban drainage and can be gradually incorporated  into the way of 
thinking and designing drainage systems.  

2. Area of Interest 

The area of interest is Limassol, located at the south part of the third largest island in the 
Mediterranean basin, Cyprus. Its climate is typical Mediterranean and includes mild winters and 
long, hot and dry summers. Sunshine is abundant during the whole year, with an average duration 
of sunshine of 11.5 h per day in summer and 5.5 h in winter. Evapotranspiration is high and on an 
annual basis, corresponds to 80% of the rainfall [8]. 

The average annual precipitation in Limassol is 457.5 mm and it is characterized by high 
seasonality due to the fact that as illustrated in Figure 1, 62% of annual rainfall falls during the 
winter months and almost none falls at summer months. During the 20th century a remarkable 
decrease in the amount of precipitation and a more extreme increase in temperature even in rural 
areas were observed [9]. 

 

Figure 1. Comparison of mean and normal rainfall height (mm) in Limassol between years 1991–2005 
and 1961 to 1990 (data from [8]). 

Limassol is a coastal city with flat topography on the south, near the beach, and with higher 
elevation and more intense slope in the northern part (Figure 2).  
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(a) (b) 

Figure 2. (a) The Digital Elevation Model (DEM) of the study area. The higher elevations are shown 
with darker pixels; (b) The ground slope of the study area extracted from the Digital Elevation 
Model. The flat areas are shown with light pixels. 

The topography of Limassol is typical coastal plain that rises gradually from sea level to low 
lying hills in the north and north east. A number of rivers and streams with temporary flow, limited 
during and shortly after rainfalls, run the city from north to south conveying the stormwater to the 
sea (Figure 3).  

  
(a) (b) 

Figure 3. (a) The hydrographic network of the study area extracted from the Digital Elevation Model; 
(b) the depressions of the ground extracted from the Digital Elevation Model are shown with black. 
The calculated basins are with several colors and the rivers are shown in blue. 

The fragmentation of stormwater management between the authorities is prevailing in the 
country. However, efforts of sustainable stormwater management, particularly in Limassol, have 
been initiated several years ago, at 1992 by the Sewerage Board of Limassol Amathus which is the 
implementing authority for drainage systems in the city and prepared a Stormwater Management 
Plan [10]. The plan was later updated in 2003 and is gradually implemented since then. Right from 
the start it was identified that the management of stormwater should not only be done only by 
increasing the capacity of conveyance pipes, but also using sustainable practices that incorporate 
local treatment, retention, attenuation, infiltration and conveyance of water runoff. The Limassol 
Stormwater Management Plan in addition to the underground drainage system comprises of four 
retention ponds, aiming to provide protection during extreme events, additionally to the 
environmental benefits that they comprise. In addition, natural watercourses in the area are 
extensively used to the maximum, therefore reducing the use of pipe-based drainage systems.  

The case of Limassol is a fine example in Cyprus as the participation of all local authorities was 
achieved. Some of the measures taken to mitigate the impacts of urbanization are the 
implementation by the building permit laws and certifications, of a soakaway into every new 
development.  
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But apart from the abovementioned already adopted techniques which in the case of retention 
ponds are costly, the aim of this work is to further promote other SuDS techniques that are currently 
of limited use in the island. Areas that bioretention and other SuDS systems can be adapted are 
presented, causing the transformation of public areas into multifunctional land cover.  

3. Description of the Techniques Proposed  

Depending on the area of implementation and its specific characteristics, various techniques of 
SuDS can be applied. In order to present those techniques problem areas identified during rain 
events were selected. Opportunities to implement such practices into public spaces such as roads, 
cul-de-sacs, traffic islands, green spaces etc. are also introduced.  

In this paragraph some examples where such systems could be adapted are presented. Some of 
the areas of implementation shown below were chosen from field investigations during rain. It is not 
necessary that they should be implemented in areas with flooding problem. Their main purpose is to 
retain the water on the source, before it flows downstream.  

3.1. Bioretention Systems 

Bioretention areas or otherwise mentioned as raingardens, are shallow landscaped depressions 
which are typically under-drained and rely on engineered soils, enhanced vegetation and filtration 
to remove pollution and reduce runoff downstream [11]. They aim at managing and treating runoff 
from frequent rainfall events and they are an effective method for managing stormwater runoff 
volumes, peak flow rates and at the same time they improve water quality by providing extra 
storage space which allows the water to collect and pool [12,13]. Moreover, they provide high 
aesthetic value and can be adapted into a large variety of shapes depending on the site. 

Raingardens can be implemented both in a low density built area (with gentle slopes) and in a 
high density built area (where they may have a hard edge with vertical sides). Common areas of 
implementation include landscaping islands, cul-de-sacs, parking lot margins, open space, rooftop 
drainage and street-scapes (i.e., between the curb and sidewalk) as shown in Figure 4.  

  
(a) (b) 

Figure 4. (a) Sketch of a street scape bioretention system. It is usually placed in main roads with no 
parking allowance. In case of the presence of a parking lane, a pavement of about 0.60 m should be 
installed between the system and the road; (b) conceptual sketch of a bioretention system in a 
roundabout. 

Making a simplified calculation, a green space of 50 m2 area transformed into a rain garden and 
having the level of the ground adjusted at 15 cm below the road level, could store over 7 m3 of peak 
runoff water, without considering the amount of water stored below the bioretention soil which 
depends on the depth of the storage layer [14].  

Despite SuDS systems are preventative and not on the point of the problem solutions and are 
usually implemented at higher grounds where the runoff starts, an application could be in the 
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coastal road of Limassol. During rains, due to the fact that the road is relatively flat and also due to 
the incapacity of the storm sewer, parts of the road usually flood. Taking into consideration that 
almost all of the road’s length that is over 30 km, the transformation of the green area that separates 
the road from the bicycle lane into a bioretention planter is proposed.  

The system which is shown in Figure 5, may consist of impermeable liner to prevent seepage in 
the road’s subbase. Depending on the length of the system, a permeable pipe may be placed in order 
to distribute the water uniformly. The bicycle lane could also be transformed into a permeable 
pavement with storage space beneath. As the system will not have infiltration capacity because of its 
proximity to the sea, a pipe can convey the stored water from the storage layer through the 
pedestrian road, to the beach.  

By adapting 100 m of the green stripe shown below in Figure 5 into a bioretention planter, could 
result in the detention of over 15 m3 of water just in the surface of the planter.  

V = W × L × D = 100 × 1 × 0.15 m = 15 m3 (1)

where:  

V = Volume of Surface storage 
L = Length of Bioretention Planter 
W = Width of Bioretention Planter, assumed 1 m and  
D = Depth of Bioretention soil surface which usually corresponds to the maximum level of water and 

is assumed 15 cm 

More water could also be stored within the bioretention soil and the aggregate storage layer, 
which depends on the bioretention media used and the depth of the layers. Moreover, the 
combination of the bioretention planter with a permeable bicycle lane could provide even more 
storage space, which also depends on the depth of the storage layer. Assuming the width of the 
bicycle lane at 1.5 m and the depth of the storage layer at least 1 m, the amount of water stored 
would be around 50 m3.  

  
(a) (b) 

Figure 5. (a) The coastal road of Limassol; (b) Graphical representation of a combined system with a 
bioretention planter and a permeable pavement to store or retain water that could be applied. 

3.2. Detention Basins 

Detention basins are surface storage basins that provide flow control through attenuation of 
stormwater runoff. They are normally dry and this permits the additional use of the land as a 
recreational facility.  

The retrofit of large roundabouts or green spaces into storm water detention basins could also 
solve many flooding problems and at the same time enhance the urban environment. In Figure 6, a 
sketch of such a roundabout is presented. The transformation of a roundabout with a diameter of 
about 30 m into a detention basin could result in the storage of over 1000 m3 of peak runoff water.  
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Figure 6. Conceptual sketch of a roundabout detention basin. 

3.3. Permeable Pavements 

Permeable pavements are surfaces that allow runoff to infiltrate into a storage reservoir 
underneath. The water can then infiltrate into the subsoil or in cases of low infiltration soils, an 
underdrain that convey the water to the storm sewer can be used. This system provides exceptional 
hydrologic performance in reducing the peak runoff [15].  

Permeable pavements could function as an alternative or a complement to the underground 
stormwater system. In Figure 7 below, we can see two possible sites of implementation in Limassol.  

  
(a) (b) 

Figure 7. (a) A bus stop after rain; (b) A side parking lane after rain. 

Making a simplified calculation, if a permeable pavement would be constructed in the areas 
presented above, occupying area of about 20 m2 and filled with aggregate of 1.5 m depth which 
would have 30% pores, the amount of water stored would be about 20 m2 × 1.5 m × 30% = 9 m3. This 
water could then either infiltrate the subsoil or be conveyed to the storm sewer at a slower pace, thus 
reducing the peak runoff and at the same time reducing the flooding areas.  

4. Conclusions 

In this paper a number of SuDS techniques were presented which can improve urban 
stormwater management. A common characteristic of the systems proposed above is that they 
usually have a large impact on the urban landscape, enhancing the presence of plants in the urban 
environment and providing all the benefits to the public health, while also reducing the peak runoff, 
the volume of water flowing to the recipient and its quality.  

The creation of tools such as technical guides, fact sheets and maps would facilitate the 
implementation of such systems. These, combined with the creation of showcases in public 
properties, will help designers, authorities and professionals familiarize with sustainable 
stormwater urban management. The goal is to incorporate sustainable practices into the way of 
thinking and designing infrastructure, thus guiding the city closer to a sustainable city.  
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