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Abstract: In the last three decades, the need of achieving a reliable water distribution system has 
become more eminent for both the consumer’s satisfaction and the efficient management of water 
sources. The purpose of this paper is to provide an optimal separation of a water distribution 
network (WDN) into District Metered Areas (DMAs) in order to ensure that the delivered water is 
of proper age and pressure. At first, the water distribution network is divided into smaller areas via 
the method of Geometric Partitioning, which is based on Recursive Coordinate Bisection (RCB). 
Subsequently, Gaussian Mixture Modelling (GMM) solution is applied, obtaining an optimal 
placement of isolation valves and separation of the WDN into DMAs. The performance of the 
proposed system is evaluated on two different networks and is compared against the Genetic 
Algorithm (GA) tool, constituting a very promising approach, especially for sizeable water 
distribution networks due to the diminished running time and the noteworthy reduction of 
pressure and water age. 
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1. Introduction 

A reliable Water Distribution Network (WDN) plays a vital role in providing a desirable life 
quality to the public. Reliability lies upon two main pillars, proper pressure and water age to the 
system. The optimization of WDNs is a complicated task, which has been a challenge for engineers 
and researchers throughout the last decades, due to the need of solving many non-linear equations 
and the complexity of parameters characterizing the system. Therefore, they have focused on 
stochastic or so-called heuristic methods and various artificial intelligence-based algorithms. 
Farmani and Walters [1] examined the reduction of the cost and water quality through a Genetic 
Algorithm. Additionally, Creaco and Pezzinga [2] applied the same method to optimize the amount 
of leakage in the water distribution network. Apart from Genetic algorithms, many other methods 
have been proposed for the optimization and modelling of the WDNs. Campolo [3] and Kumar [4] 
used Artificial Neural Networks for the rainfall-rainoff modelling and Nagy et al. [5] and Abrahart 
et al. [6] for sediment prediction. Maier [7] was the first who used an Ant Colony algorithm- ACOA 
to optimize a WDN. Also, Kumar et al. [8] proposed an ACOA to adjust the tank level and 
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Lopez-Ibanez [9] used this for the optimization of the pumps’ operation in the system. Ostfeld et al. 
[10] conflated the latter works to optimize the modelling and operation of the network in 
conjunction with the commission of pumps and tanks. The combination of two or more optimization 
methods consists a hybrid approach. Many other metaheuristic methods have been applied to solve 
the problem of designing the optimal water distribution network, as Simulation Annealing (SA) [11], 
Iterated Local Search [12] and Shuffle Frog Leaping [13]. 

However, when dealing with large WDNs, most heuristic methods are inefficient and 
time-consuming, due to the wide search space that must be explored. Thus, strategies for diminish 
the search space are of greatest need. The purpose of this paper introduces a new hybrid approach of 
optimization, to guarantee more accurate results in reduced running time. The proposed method is 
based on abbreviating the search space by dividing the WDN in smaller areas and work out each one 
of them in a parallel manner. The following algorithms have been applied to optimize the water age 
and calibrate the pressure of the network by dividing it into District Metered Areas—DMAs. The 
performance of the approach presented in the paper is evaluated on two different networks and 
compared against the Genetic Algorithm. 

2. Proposed Model 

2.1. Geometric Partitioning 

Dividing a region into smaller sub-areas is an issue we come across in many graph data 
structure problems. Such a problem is the separation of large WDN, which is critical due to the need 
of running time reduction and computational requirements restriction. The algorithm is based on 
Recursive Coordinate Bisection (RCB) [9]. RCB is a technique for dividing a list of coordinates into 
approximately equal sized partitions of spatially close elements. The general idea is to find the most 
expanded dimension of Geometric coordinates and find a layer that will split the graph into two 
roughly equal parts. Then the separation continues recursively in each part, until the intended 
number of areas is created. It stands to reason, that if we want, for example, to divide the domain 
into eight subdomains, we have to apply RCB algorithm three times to the dual. Also, the domains 
have a few isolated outlying vertices and none connectivity information enters the RCB.  More 
precisely, assuming that the set of vertices V = [v1, v2, …, vi], with i being the number of water 
distribution network nodes, corresponds to the two-dimensional coordinates of each node, vi = (xi, 
yi), we apply a bisection operation selecting one of the two coordinate directions randomly [10]. 
Specifically, selecting the x-coordinate direction, for example, all vertices are sorted according to the 
x-coordinate and, thus, the set of nodes are split into two subsets assigning half of the nodes to each 
subdomain. Furthermore, the partition into r subdomains is performed by applying r times the latter 
procedure to the set of vertices.  

2.2. Gaussian Mixture Modelling  

Viewing the problem of water distribution network optimization as a clustering problem, we 
assume that, each node is represented by a variable xn, with n = 1, ..., N being the number of nodes in 
each partition generated by the Geometric Partitioning algorithm. Our goal is to separate the nodes 
of each partition individually into K clusters, with K given. Intuitively, we could see a cluster as a 
group of nodes where inter-cluster distances are smaller than those outside the cluster. Specifically, 
the value of xn emerges in accordance with the value of the objective function for the node n and has 
a distinct vector πnj, j = 1, ..., K which denotes the probability of the n-th node to belong to the j-th 
cluster. Supposing that the independently distributed random variables X are a realization of a 
Gaussian mixture model (GMM) [11,12], the probability of a single node is expressed by: 

p x)	=	 πk	N	 x|µk	,Σk)
K

k=1
 (1) 
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where, Π is constrained to be positive, 0 <	π 	< 1, and summing to unity, ∑ Πκκ
κ=1  = 1. Furthermore, 	 x|μ 	, Σ ) is a Gaussian distribution with µκ denoting the Gaussian kernel mean vector and Σk 

representing the Gaussian kernel covariance matrices. 
Similarly, the conditional distribution of x, given an explicit hidden variable Z which leads to 

significant simplifications for the model, is a Gaussian: 

p x|z)	=	 N(x|µk ,Σk)zk
K

k=1

 (2) 

while the prior distribution for the latent variable is distributed multinomially: 

p(z)	=	 πk
zk

K

k=1

 (3) 

with zk being a binary vector having a single component equal to 1, znk = 1, and all others equal to 0. 
To perform our formula inference, we exploit MAP estimation through EM algorithm [13]. 

Thus, for the calculation of the parameters πκ, µκ and Σκ we use the GMM-EM 
(Expectation-Maximization) algorithm [14], which is a repetitive algorithm and a powerful method 
for finding solutions concerning models with hidden variables. The algorithm starts with an initial 
estimate of the parameter values randomly and continues with a calculation of the values until 
convergence. Each iteration consists of two steps the E-step and the M-step. The equations resulting 
from the E-step and M-step steps of the algorithm are as follows: 

pnk = 
N xn µk,Σk P(k)

P(xn)  (4) 

Nk	=	 pnk 

N

n=1

 (5) 

πk
(new)	=	Nk

N  (6) 

µk
(new)	=	( 1

Nk
) pnk xn

N

i=1

 (7) 

=	( 1
Nk

(new)

k
) pnk 

N

n=1

(xn-µk
new))(xn-µk

new))T (8) 

3. Optimization and Experimental Results 

3.1. Networks 

For the experiments a realistic network (Net22) is used, which has one reservoir, two pumps 
(boosters PMP1 and PMP2) with which the water acquires the speed needed to serve all the nodes of 
the network, tank (tank T-1) where water is stored and 100 pipelines with start and end nodes. This 
network is shown in Figure 1a and has been generated by the Watergems program. 

The second network is the Aiani’s network, with Aiani being a town in the prefecture of Kozani 
in Greece (Figure 1b) and belongs to the region of Western Macedonia with an area of 152.9 square 
kilometers. The altitude of the area is 460 m and the lowest point of the network is 432 m while the 
highest point is 547 m. Due to the altitude difference in the area and the gravity effect, water 
pressure and water quality are significantly affected. It consists of 329 pipelines with a total length of 
28,846 m, 140 valves and two tanks.  
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(a) (b) 

Figure 1. (a) The demo network Net22; (b) the Aiani network. 

3.2. Forming of the Objective Functions 

Applying the GMM-EM algorithm to each partition that emerged through the Geometric 
Partitioning described earlier, k different clusters are created within each sub-region. The number k 
of the cluster has to be set in such a way that it leads to greater optimization of the objective function. 
The value for each node i is derived, initially, from the equation: 

xi	=	 Dit×Pit

T

t=1

 (9) 

where, Dit is the demand of node i at each time step t [lt/sec] and Pit represents the pressure of node i 
at each time step t [kPa]. Additionally, we examined the influence of the algorithm using as objective 
the age of water using the function: 

xi	=	maxi(Age)|t=1
T  (10) 

Considering the average µκ of each cluster, clusters from each partition were selected with the 
highest mean average so that the isolation valves are located there.  

3.3. Performing the Proposed Model for Both Networks  

By performing the Geometric Separation algorithm in a Matlab environment for Net22 with κ = 
4 number of sub-regions, the resulting separation is shown in Figure 2a, where the network is 
divided into well-defined, equivalent-sized areas. During the implementation of the GMM-EM 
algorithm in the network, approximately 5 iterations until convergence were needed for each 
sub-region and 0.006 s of the total time was required. It should be noted that the parameters initial 
values were set iteratively, and we chose those that optimize the result. In Figure 2b the results 
obtained through the GMM are shown, where the clusters with the highest average are those of 
interest and are depicted in red contour shapes. More precisely, by comparing the mean average 
value of each generated cluster, we get the one with the highest μκ value and after placing an 
isolation valve on each pipe or a combination of them within the specific cluster, we check the total 
product Pressure*Demand for a period of the 24-h (PD). The basic constraints for the selection of the 
closing pipes are that, firstly, the terminal nodes are not included in those that can be selected, and 
additionally, nodes with negative pressures and pressures below 200 kPa (29 psi) are rejected. The 
latter process is repeated for all remaining clusters and at each time we hold the isolation valves that 
have already been placed in previous clusters. 

The candidate pipes for closing are shown in Figure 2c marked with green color. The selected 
pipes are 3: P-17, P-33, and P-126. The initial value of the product before closing the pipes is 1,597,700 
(psi*gpm) and after closing using isolation valves is 771,360 (psi*gpm). Therefore, the total Pressure 
*Demand product is minimized by 52.72%. Finally, the maximum age of water is calculated before 
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and after performing the proposed model, resulting in a 5% reduction. Finally, considering the 
proposed pipes through the proposed algorithm, a new separation of the network into isolated 
DMAs is shown Figure 2d. As shown in the Figure 2d, the partition is slightly altered in contrast 
with the one produced by the Geometric Partitioning algorithm. The green circle indicates the pipe 
recommended for PRV valve placement. Finally, the most critical junction is ‘J-64′ with a total 
pressure drop at 76.63%. The initial average pressure value for the critical node is 109.1023 psi and 
the final is 26.4402 psi. 

Performing the latter procedure for the Aiani network the pipes selected to be closed are 171, 
134, 144, 138, 169 and 142. This resulted in a decrease of Pressure*Demand product by 31.60% and of 
the corresponding maximum water age by 5%. The optimum result, using the second objective 
function, obtained by placing a closed valve at node 98 with the average water age being reduced by 
14.95%. Figure 3 below shows the Aiani network divided into DMAs with the pipes proposed by the 
model to be closed marked with black color. In Figure 4 the experimental results corresponding to 
the Pressure*Demand product and water age reduction for both networks are shown. 

 

 

(a) (b) 

  
(c) (d) 

Figure 2. (a) Separation of Net22 into sub-regions using Geometric Partitioning; (b) the clusters with 
the highest average value for each sub-region using GMM-EM (red contour); (c) the pipes in which 
isolating valves are installed are colored in green; (d) splitting of Net22 into DMAs and the pipes 
with the green circle denote the selected pipes for PRV installation. 
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Figure 3. Separation of the Aiani’s network into DMAs with the proposed pipes for closing by the 
model being marked with black color. 

(a) (b) 

Figure 4. (a) Pressure*Demand product reduction; (b) water age reduction for both networks. 

3.4. Comparison with Genetic Algorithm 

Applying the Genetic algorithm to the Net22, 8 different pipes to be closed are proposed: P-151, 
P-249, P-263, P-146, P-212, P-143, P-240 and P-35. This leads to a total reduction of the objective by 
16.69% and the maximum water age by 3%. The result is 11% smaller than that of the proposed 
model and the main issue focuses in the number of valves to be placed which are almost twice as 
high as those previously proposed. This is a significant drawback due to the huge installation cost. 

Then, the Genetic algorithm was performed for the Aiani network proposing the optimal 
scenario of 8 closed pipes, with IDs: 216, 171, 165, 155, 106, 332, 319, 287. This resulted in a water age 
reduction of 0.5% and a Pressure*Demand product decrease of 11.2%. 

4. Conclusions 

Initially, via the method of Geometric Partitioning the networks are divided into sub-regions. 
The main contribution of this separation method is that each region borders are distinguishable and 
there is no coverage between regions. Among others, equivalent areas are created, reducing the 
complexity of the network, which implies its better control. Then, the GMM algorithm is performed 
in parallel for every region and the computational time is reduced dramatically in comparison with 
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the Genetic Algorithm. More specifically, by comparing the proposed algorithm with the Genetic 
algorithm, it has been proven that the GMM algorithm leads to more remarkable results in 
accordance with the optimization of both pressure and water age. Furthermore, the hybrid approach 
ensures the placement of fewer PRV valves. In conclusion, the proposed method is suitable for 
sizeable networks due to the limited computational time of the proposed model. 
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