

Abstract Gluing Formula for Casimir Energies *

Klaus Kirsten ^{1,*} and Yoonweon Lee ²

- ¹ Department of Mathematics, Baylor University, Waco, TX 76796, USA
- ² Department of Mathematics, Inha University, Incheon 402-751, Korea; yoonweon@inha.ac.kr
- * Correspondence: klaus_kirsten@baylor.edu
- + Presented at Symmetry 2017—The First International Conference on Symmetry, Barcelona, Spain, 16–18 October 2017.

Published: 3 January 2018

Let M_1 and M_2 be two Riemannian manifolds each of which has the boundary N. Consider the Laplacian on M_1 and M_2 augmented with Dirichlet boundary conditions on N. A natural question to ask is whether there is any relation between spectral properties of the Laplacian on M_1 , M_2 , and the Laplacian on the manifold M (without boundary) obtained by gluing together M_1 and M_2 , namely $M = M_1 \cup_N M_2$. A partial answer is given by the Burghelea-Friedlander-Kappeler-gluing formula for zeta-determinants. This formula contains an (in general) unknown polynomial which is completely determined by some data on a collar neighborhood of the hypersurface N. In this talk, I present results for the polynomial in terms of suitable geometric tensors on N. Choosing M_1 , M_2 and M as appropriate, results in a gluing formula for Casimir energies.

Conflicts of Interest: The authors declare no conflict of interest.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).