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Abstract: Proximal remote sensing devices are becoming widely applied in field plant research to 
estimate biochemical (e.g., pigments or nitrogen) or agronomical (e.g., leaf area, biomass, or yield) 
parameters as indicators of stress. Non-invasive characterization of plant responses allows for the 
screening of larger populations faster than conventional procedures which, in addition to requiring 
more time, either imply the destruction of material or are subjective (e.g., visual ranking). This study 
explores the comparison of a set of remote sensing devices at single-leaf and whole-canopy levels 
based on their performance in assessing how the eggplant and its yield responds to grafting as a 
way to tolerate root-knot nematodes. The results showed that whole-canopy measurements, such 
as the Green Area (GA) derived from the Red-Green-Blue (RGB) images (r = 0.706 and p-value = 
0.001**) or the canopy temperature (r = −0.619 and p-value = 0.005**), outperformed single-leaf 
measurements, such as the leaf chlorophyll content measured by the Dualex (r = 0.422 and p-value 
= 0.059) assessing yield. Moreover, other parameters, such as the time required to measure each 
sample or the cost of the sensors, were taken into account in the discussion. In sum, indices derived 
from the RGB images demonstrated their robust potential for the assessment of crop status as a low-
cost alternative to other more expensive and time-consuming devices. 
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1. Introduction 

The formulation of remote sensing indices derived from multispectral information is useful to 
assess plant diseases, detect stress, or predict crop production [1]. Remote sensing techniques are 
used to monitor and phenotyping of cultivars properly, for instance, the assessment of biomass, water 
and nutrient status, or pigment content, which allows the practice of precision agriculture. 
Traditional procedures in plant physiology studies are destructive (i.e., require the harvest of leaves 
or even the whole plant) and are especially time consuming [2]. The main benefits of using proximal 
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remote sensing sensors are that measurements are performed in field conditions precisely, rapidly, 
and without the need to destroy the plant material [3]. There are several types of sensors based on 
the spectral reflectance and transmittance of the plants; all can work at leaf scale, such as clip-leaf 
sensors that optically measures the relative chlorophyll concentration [4], or at canopy scale, such as 
the Normalized Difference Vegetation Index (NDVI) that is used for measuring biomass estimations 
[5]. Another approximation would be the canopy temperature measurements that are used for the 
detection of changes in stomata conductance as a response of water status [6]. However, the 
acquisition of such devices entails notable economic cost. However, information derived from Red-
Green-Blue (RGB) images is presented as an accessible low-cost alternative [7], providing agricultural 
farmers the tools to predict production and adjust crop needs to crop supplies, allowing them to be 
precise in their crop management. Moreover, efforts are focused on the development of inexpensive 
instruments as the MultispeQ, a low-cost device that, in addition to pigment content, provides 
measures of photosynthetic parameters [8]. Eggplant (Solanum melongena) has received increasing 
attention in recent years with regard to its phytochemical and nutraceutical components [9]; however, 
its production is threatened by root-knot nematode (Meloidogyne javanica). Root-knot nematodes are 
the most important agricultural pest in several tropical and subtropical countries where eggplant is 
widely cultivated [10]. It causes several root damage, restricting nutrient and water uptake of crops, 
and, consequently, limits production. A proposed strategy to minimize the nematodes incidence on 
plant growth and yield is to use resistant and tolerant rootstocks for grafting the eggplants. In this 
sense, Solanum torvum may represent an adequate choice as rootstock. The aim of the present study 
was to compare different proximal remote sensing approaches at the plant and single-leaf level to 
assess the effect on the eggplant when grafted with the tolerant species Solanum torvum. These remote 
sensing approaches evaluated water status and plant biomass of eggplants grafted in Solanum torvum. 
The ability to assess differences in the response to the growing conditions and to correlate to final 
yield was compared and discussed to conclude which proximal sensing approach (multispectral 
versus RGB-based indices) and at which level (leaf versus whole plant) is the more convenient to 
assess to what extent ungrafted and grafted eggplant onto S. toryum are stressed by root-knot 
nematodes. Sensor cost and the sampling procedures required were also compared. 

2. Experiments 

2.1. Plant material, growing conditions, and data collection 

The experiment was developed in a plastic greenhouse located at the experimental station of 
Agròpolis (41°17’18.1” N 2°02’38.5” E + 18 m above the sea level, approx.) of the Escola Superior 
d’Agricultura of the Universitat Politècnica de Catalunya (ESAB - UPC), in the municipality of 
Viladecans (Barcelona, Spain) from March to November 2018. Soil was artificially infested with 
Meloidogyne incognita in 2014 and cultivated with eggplant, lettuce, melon, tomato, and watermelon 
over several years. A total of eighty eggplants, forty ungrafted and forty grafted onto the S. torvum 
cv. Brutus, were transplanted in twenty plots, four plants per plot. The same plots were used each 
year to know the putative selection of virulent nematode populations after the repeated cultivation 
of the resistant eggplant rootstock. The nematode population densities in soil at transplanting (Pi) the 
ungrafted eggplant ranged from 330 to 7584 juveniles 250 cm-3 of soil, and between 8 and 1292 
juveniles 250 cm-3 of soil in plots transplanted with the grafted plant. Each plot consisted of four 
plants, spaced 0.55 cm apart, each growing under a plastic greenhouse and fertilized by a drip 
irrigation system. Eggplants were harvested and weighed when fruits reached commercial standards. 

Remote sensing evaluations were performed on October 1, 2018 during the practical lessons of 
the subject of New Perspectives in Environmental Agrobiology class for the Master’s degree in 
Environmental Agrobiology. The measurements were divided as leaf-based and plant-based 
assessments, and both were conducted from 15:00 to 17:00 h. Measurements at single-leaf level were 
performed using two different clip sensors. On the one hand, leaf pigment contents were assessed 
using Dualex leaf-clip portable sensor (Dualex Force-A, Orsay, France), which measures chlorophyll 
(Chl), flavonoid (Flav), and anthocyanin (Anth) content [11]. In addition, it calculates the nitrogen 
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balance index (NBI), which is the ratio Chl/Flav related to the nitrogen and carbon allocation [12]. On 
the other, the MultispeQ device (Michigan State University, Michigan, USA), controlled by the 
PhotosynQ platform software [8], is an instrument that combines the functionality of a handheld 
fluorimeter, a chlorophyll meter, and a bench-top spectrometer. Moreover, it includes sensors of 
abiotic factors, such as the ambient temperature, relative humidity, barometric pressure, and altitude 
as well as contactless leaf temperature, leaf angle, and leaf direction. Among all the parameters that 
were used as estimates, we used the measures of fluorescence base parameters as the quantum yield 
of photosystem II (PSII) photochemistry (ΦII), the quantum yield of non-photochemical quenching 
(ΦNPQ), or the quantum yield of other unregulated (non-photochemical) losses (ΦNO), and the relative 
chlorophyll content (Rel Chl). One RGB picture was taken per plot, holding the camera at 80 cm above 
the plant canopy in a zenithal plane and focusing near the centre of each plot. The conventional digital 
camera used was a Lumix GX7 (Panasonic, Osaka, Japan), a digital, single-lens, mirrorless camera 
with an image sensor size of 17.3 × 13.0 mm. Images were taken at 16-megapixel resolution using a 
20 mm focal length. The images were saved in JPEG format with a resolution of 4592 × 3448 pixels 
and were subsequently analysed using the MosaicTool plugin. This software includes a JAVA8 
version of Breedpix 2.0 (https://bio-protocol.org/e1488, IRTA, Lleida, Spain) that enables the 
extraction of RGB indices in relation to different color properties of potential interest [7]. The NDVI 
was determined at ground level using a portable spectrometer (GreenSeeker handheld crop sensor, 
Trimble, Sunnyvale, CA, USA) by passing the sensor over the middle of each plot at a constant height 
of 0.5 m above and perpendicular to the canopy. Canopy temperature (CT) was measured using a 
PhotoTempTM MXSTM TD infrared thermometer (Raytek, Santa Cruz, USA), pointing towards the 
canopy at a distance of 0.5 m in the opposite direction of the sun. Finally, combined RGB and thermal 
images were taken using the phone CATS60 (Caterpillar Inc., Deerfield, Illinois, U.S.) and processed 
with the CeralsMobile with Hue Enhanced Agricultural Temperature (H.E.A.T.) software 
(https://integrativecropecophysiology.com/software-development/cerealsmobile/, University of 
Barcelona, Spain). 

3. Results and Discussion 

Grafting did not report any significant differences in the leaf-based measurement; in contrast, a 
significant effect was found between treatments (ungrafted and grafted) for almost all the whole plant 
parameters, with the exception of those derived from the thermal camera of the mobile phone, as 
seen in Table 1. The Meloidogyne nematode damages the plant roots directly due its parasitic activity, 
causing a negative effect on the absorption of water and nutrient that is exposed as noticeable 
reduction in growing [13]. Root-knot nematodes did not affect directly the pigment composition of 
the leaf, as noted with the leaf-based measurements. Nevertheless, because the nematodes affect 
roots, we expected a sharper nutritional deficit captured by the leaf-based measurements. 
Chlorophyll readings on the non-grafted plants were slightly lower than the grafted plants (data not 
shown). However, little impact was noticed in the correlations of the chlorophyll readings and some 
of the photosynthesis parameters against yield. On one side, chlorophyll readings are a useful 
screening criterion to detect stress associated effects [14]. Both leaf-clip devices (Dualex and 
Photosynq) use the same wavelengths to assess chlorophylls (650 and 940 nm). Apart from 
chlorophylls, Dualex also measures other pigments, but no treatment effects were found for these 
other pigments that did not correlate with yield. Photosynq provides information about 
photosystems status [8] and the fates of light energy absorbed [15], as the ΦII, the ΦNPQ, or the ΦNO. 
The combination of those traits could permit a wider assessment of the plant status. The main reason 
of the lack of statistically differences between grafted and ungrafted eggplants might be attributable 
to the period during which the measurements were taken, which might have been too late in the 
phenological cycle of the eggplants. Therefore, the only significant differences reported were in 
growth. In fact, in previous studies changes in yield of grafted and ungrafted cucumber were related 
to the relative variation in both chlorophyll refelctance and net photosynthetic rate [16], confirming 
previous results in which relative dry top weight of cucumber [17] or zucchini-squash biomass [18] 
was related to relative leaf chlorophyll content measured earlier in the plant-nematode interaction 
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and in situations in which root-knot nematode was the main agent of biotic stress. Alternatively, the 
effect of nematodes in the plant status was mild but accumulative. Moreover, the operator 
subjectivity in choosing the leaves to be clipped can represent a cause of error. Finally, the major 
drawback of the leaf-based clip sensors is the time required to take the measurements. This significant 
time requirement limits their application in large scale studies because an elevated number of 
replicates is needed to take representative measures of the whole plot variability. In a comparison of 
both devices, the sampling with the Photosynq is even more complex because it needs to be operated 
through Bluetooth using a smartphone and takes longer to measure a single leaf. However, in terms 
of price, Photosynq is much cheaper than the Dualex. 

Table 1. Summary of the different sensor/techniques used to assess crop status. Each technique was 
evaluated in terms of accuracy, sampling difficulty, sampling time, post-processing, and cost. Color 
intensities correspond to higher or lower evaluation results. Significant differences between grafted 
and non-grafted plants were tested by one-way analysis of variance. ns, not significant differences. R, 
correlation with yield. 

Level Sensor Trait 
Accuracy Sampling 

difficulty 
Sampling 

time 
Post-

processing Cost 
ANOVA R 

         

Leaf-
based 

Dualex 

Chl ns 0.422 

    

Anth ns 0.105 
Flav ns −0.270 
NBI ns 0.277 

        

Photosynq 

Phi2 ns 0.438 

    

PhiNO ns −0.169 
PhiNPQ ns −0.388 
Rel Chl ns 0.526 
Fv’/Fm’ ns 0.335 

         

Canopy-
based 

GreenSeeker NDVI * 0.601 
    

        

RGB images 

Hue * 0.662 

    

GA ** 0.706 
GGA * 0.635 

NGRDI ** 0.642 
        

Infrared gun CT ** −0.618 
    

        

Thermal 
camera + RGB 

Hue ** 0.590 

    

GA * 0.472 
GGA ** 0.547 
CT ns −0.157 

CT[GA] ns −0.154 
CT[GGA] ns −0.154 

                  
 

In contrast, canopy-based measurements presented a better alternative to assess the nematode 
resistance. The use of RGB indices derived from conventional digital cameras is widely applicable for 
monitoring crop growth and crop status [19–21]. Via an assessment of the color tonalities of the image 
with the Hue parameter, the percentage of green pixels can be calculated [7]. GA is the relative 
amount (in per one) percentage of pixels in the image with a Hue range from 60° to 180°, including 
yellow to bluish green color values. Meanwhile, GGA is more restrictive because it reduces the range 
from 80° to 180°, thus excluding the yellowish-green tones. The formulation of GA (p-value < 0.001, R 
= 0.706) improved the crop assessment with the Hue parameter itself (p-value < 0.05, R = 0.662) and 
the more restrictive index GGA (p-value < 0.05, R = 0.635). The GA is a reliable estimation of the crop 
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coverage of the soil. Because the eggplants were in a late growing stage, an elevated percentage of 
leaves were senescent. It was more important to assess differences in growth than the plants that 
were staying green longer. However, RGB indices derived from the smartphone camera followed a 
different trend: the Hue values (p-value < 0.001, R = 0.590) outperformed GA (p-value < 0.05, R = 0.472) 
and GGA (p-value < 0.001, R = 0.547) formulations. This might be attributable to the differences in 
image resolutions of both devices (digital camera versus phone camera). Using the RGB images, the 
Normalized Green Red Difference Index (NGRDI) was also calculated, which is an index similar to 
NDVI but uses information from the green instead of the near-infrared bands. The NDVI is one of 
the most well-known vegetation indices to assess crop biomass. However, our results showed than 
even if the Red-Green reflectance break was smaller than the Red-NIR break, the NGRDI (p-value < 
0.001, R = 0.642) outperformed the NDVI (p-value < 0.05, R = 0.601). These results support the 
conclusion that the indices derived from conventional digital images are efficient and low-cost 
alternatives when compared with the specialized and more expensive sensors, such as the 
GreenSeeker. Finally, the canopy temperature (p-value < 0.001, R = −0.618) was also assessed, and it 
was reported as an accurate parameter for determining the crop resistance to the nematode. 
Decreases in stomatal conductance and transpiration rates as response to water stress cause an 
increase in plant temperature [22]. Nevertheless, the temperature measurements from the thermal 
camera of the CATS60 phone failed (p-value > 0.05, R = −0.157). The expected results were the opposite 
because the CerealApp permits combining a GA and a GGA mask to the thermal camera to achieve 
an accurate assessment of the temperature of the green area, avoiding noise from the soil that might 
affect the measurements with the infrared gun. 

4. Conclusions 

Single-leaf measurements did not show significant differences between grafted and non-grafted 
plants, and their correlations with yield were generally low. Additionally, plant-based measurements 
showed significant differences between both types of plants and higher yield correlations with yield. 
These findings suggest that plant-based measurements were more effective in assessing the response 
of the eggplants to root-knot nematodes. Root-knot nematodes did not affect leaf chlorophylls. 
Although they are not considered advanced technology, RGB indices reported significant differences 
between the growing treatments and showed the best correlations with yield. Plant temperature 
measurements with the infrared thermometer also performed well in assessing differences in terms 
of plant resistance to the nematodes. It correlated negatively with yield, probably attributable to the 
fact that the roots less affected by nematodes had better access to water and that stomata conductance 
was higher. However, when both categories of remote sensing traits (RGB indices and canopy 
temperature) were measured simultaneously with the same device (smartphone), the results 
obtained were worse. This can be attributable to the fact that this measurement was taken later and 
the solar conditions had changed. This clearly illustrates the importance of how and when (during 
the daytime) the temperature measurements are taken. In conclusion, in terms of measurements at 
leaf level, both Dualex and Photosynq are two interesting devices to study crops due to their high 
throughput measuring pigment and photosynthetic data; results could have been better if measured 
at an earlier phenological stage. Drawbacks of these devices include their time-consuming nature. 
Furthermore, canopy-based measurements permit the study of the whole plot at once (without the 
need of replicates) and showed the best results. RGB indices are presented as a promising remote 
sensing technique due to its user-friendly and low-cost nature. It should be noted that this 
measurement can be easily taken with a simple smartphone. 
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Abbreviations 

RGB: Red-Green-Blue; 

GA: Green Area; 

GGA: Greener Area; 

NDVI: Normalized Difference Vegetation Index; 

ESAB-UPC: Escola Superior d’Agricultura of the Universitat Politècnica de Catalunya; 

ΦII: Quantum yield of photosystem II (PSII) photochemistry; 

ΦNPQ: Quantum yield of non-photochemical quenching; 

ΦNO: Quantum yield of other unregulated (non-photochemical) losses; 

Rel Chl: Relative chlorophyll content 
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