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Abstract: Recent advances in sensors onboard harvesting machines allow accessing the intra-plot 
variability of yields, spatial scale fully compatible with numerous on-going satellite missions. The 
aim of this study is to estimate the sunflower yield at the intra-plot spatial scale using the 
multi-temporal images provided by the Landsat-8 and Sentinel-2 missions. The proposed approach 
is based on a statistical algorithm, testing different sampling strategies to partition the dataset into 
independent training and testing sets: A random selection (testing different ratio), a systematic 
selection (focusing on different plots) and a forecast procedure (using an increasing number of 
images). Emphasis is put on the use of high spatial and temporal resolution satellite data acquired 
throughout two agricultural seasons, on a study site located in southwestern France. Ground 
measurements consist in intra-plot yields collected by a surveying harvesting machine with GPS 
system on track mode. The forecast of yield throughout the agricultural season provides early 
accurate estimation two months before the harvest, with R2 equal to 0.59 or 0.66 and root mean 
square error (RMSE) of 4.7 or 3.4 q ha−1, for the agricultural seasons 2016 and 2017 respectively. 
Results obtained with the random selection or the systematic selection will be developed later, in a 
longer paper. 
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1. Introduction 

Over the last 50 years, the world production and the areas allocated to sunflower have both 
increased steadily, with positive trends of around 0.6 million tones and 0.4 million hectares per year, 
respectively (trends derived from the statistics of [1]). In France, the culture occupies a large part of 
the useful agricultural area (behind wheat, barley, rapeseed and maize). The spatial distribution of 
the sunflower is highly disparate considering a department benchmark. With an average of 75,000 
hectares in the last ten years, the Gers department ranks first, gathering more than 10% of the 
national area allocated to sunflower [2]. In view of the considered surfaces, the challenge is to 
identify suitable tools to monitor the culture, able to meet the constraints related to the crop growth 
cycle (agricultural season for several months) and the organization of the landscape (irregular and 
fragmented parcels). 

The surface observation capabilities provided by the satellite missions constitute a useful tool, 
allowing access to repetitive information on the surface states. They are conditioned by the 
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characteristics of the embedded sensors operating in specific wavelengths (e.g., visible, near or 
medium infrared, thermal or microwave) and delivering products at different spatial scales (pixel 
sizes ranging from meters to several kilometers). The contribution of satellite imagery for the 
monitoring of agricultural areas has been previously demonstrated, as evidence by the large range of 
applications dealing with various topics as the classification of land uses, the monitoring of the crop 
or the soil status (through the estimation of target parameters), the mapping of cultural practices or 
the detection of crop damage zones [3–5]. In the context of yield estimates, optical images have been 
widely used, providing a regular status of the photosynthetic activity of canopy. Estimates of yields 
were obtained using different approaches at spatial scale ranging from the region to the field [6,7]. 
Nevertheless, only few studies deal with the monitoring of intra-plot variability of yields and rarely 
with the real-time aspect. 

The objective of this study is to take both advantage of optical decametric satellite missions (by 
combining acquisitions performed by Landsat-8 and Sentinel-2A) together with ground data 
collected by sensors onboard harvesting machines to estimate yields of sunflower at the intra-plot 
scale (i.e., spatial resolution of 30 m). The network of plots where ground measurements and satellite 
data were available is fully described in Section 2. The proposed approach is based on random 
forest, considering reflectance as predictive variables and crop yields as target. The results are 
analyzed and discussed (Sections 3 and 4), focusing on the estimates throughout the agricultural 
season which addresses the potential of real-time estimates. 

2. Experiments 

2.1. Materials 

2.1.1. Study Site 

The study area is located in southwestern France in the Gers County. Surrounded by valleys, 
the territory is characterized by a great diversity of landscapes and types of soil comprising ustic 
luvisols, limestone, clay-limestone or more sandy soils. The county is subject to oceanic and 
Mediterranean climatic influences, with a precipitation regime spatially and annually variable. The 
useful agricultural area occupies 71% of the territory (or 447,223 ha), being mainly dedicated to the 
cultivation of seasonal crops (cereal for 44.5% or oleaginous and proteinaceous for 24%) or forage 
crops and evergreen surfaces for 19% [2]. The present paper focuses on sunflower, for which the 
agricultural season delineated by the sowing and harvesting periods is observed from spring to 
autumn. 

2.1.2. Intra-Plot Yield Data 

A network of 12 and 10 field plots of sunflower (representing 117 and 140 hectares (ha) 
respectively) were monitored to collect agricultural practices and the value of yields from farmers, 
during two successive agricultural seasons. Sizes of these fields ranged from 3.2 to 28.6 ha. The 
sunflower was sown during spring, mostly during the month of April and was harvested during the 
month of September. The mean values of yield ranged from 18.1 to 31.0 q ha−1 for 2016 and from 16.9 
to 24.1 q ha−1 for 2017, showing a variability depending on the considered plot, as evidence by the 
coefficients of variation (i.e., CV = 100 × standard deviation/mean) ranged from 18 to 36%. 

The yield values were derived from the data collected by the surveying harvesting machine 
with GPS system on track mode, namely the distance, the width of the cutting bar, the flux and the 
humidity of grain. The distance and the width of the cutting bar were first combined to obtain the 
area matching with the grain flux. The harvested yields were then computed and dry yields were 
last calculated by accounting for the humidity of grain. All the measurements performed in a pixel 
with a spatial resolution of 30 m were aggregated, avoiding the extreme values (i.e., average plus 
three sigma or 99.7% of the values). Those maps of yields constitute the targeted variable of the 
statistical algorithm. 
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2.1.3. Optical Satellite Images 

Table 1 presents an overview of the satellite images acquired during the two agricultural 
seasons. From April to September, regular high spatial resolution images were provided by 
Sentinel-2 (4 and 11 images for the years 2016 and 2017 respectively) and Landsat-8 (6 images for the 
year 2016). 

Table 1. Characteristics of the satellite remote sensing data. 

Years 2016 2017 
Satellites Sentinel-2 Landsat-8 Sentinel-2 

Dates (M-D) 

05-21; 06-20 04-15; 06-09; 07-04 04-06; 05-06; 05-16 
07-10; 07-30  08-12; 09-06; 09-13 05-26; 06-05; 06-25 

07-05; 08-04; 08-14 
    08-24; 09-13 

The time series of Landsat-8 and Sentinel-2 images were provided by the Theia land data center. 
The images were processed using the software developed by [8], delivering level 2A products 
characterized by ortho-rectified surface reflectance. The data were first corrected from atmospheric 
effects and provided with a mask of clouds and their shadows on the ground (using a 
multi-temporal algorithm). All the images were finally resized at the same spatial resolution of 30 m. 

In the present study, the focus is on the comparable bands considering the wavelength, that is 
signals acquired in blue, green, red, near infrared and short wavelength infrared. The satellite 
images constitute the input data of the statistical algorithm described hereinafter, considering two 
cases: The widely used Normalized Difference Vegetation Index or the combination of the six 
reflectances. 

2.2. Methods 

The multi-temporal satellite acquisitions are used to estimate the yields throughout the 
agricultural season of crops. Beginning with the first image acquired after the period of sowing 
(April), the estimates are then performed with a cumulative number of successive images (i.e., 1 to 
10 or 11 images for the years 2016 and 2017, respectively), until the harvest of crops (September). For 
each estimation of yields, the dataset is partitioned into independent training and testing sets, using 
a ratio of 50/50. 

The estimation of yield is based on the statistical algorithm proposed by [9]. Random forest has 
been widely used in different fields providing accurate estimates of both qualitative (through 
classification) and quantitative (through regression) variables. This non-parametric approach 
consists in combining an ensemble of independent decision trees trained on different set of samples, 
through a procedure called bagging (abbreviation of bootstrap aggregating). Each decision tree is 
first trained on a subset of randomized samples derived from the initial dataset using bootstrap 
procedure and used to provide estimates for the remaining independent samples. The decision trees 
are finally aggregated through the weighted mean of the ensemble of estimations, providing an 
estimate of the targeted variable. Unlike other statistical methods that may have limitations related 
to problems of over-adjustment, noise influence on data, or stability of results, random forests are 
particularly appropriate in multi-factorial context to account for non-linear relationships. 

Coefficient of determination (R2) and root mean square error (RMSE) are finally derived from 
the comparison between the observed and estimated yields. The analysis of results presented in the 
following section focuses on the independent testing set. Similar procedure was tested using 
artificial neural networks, showing slightly lower performances. For the sake of conciseness, only 
results obtained using random forests are presented hereinafter. 
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3. Results 

3.1. Multi-Temporal Estimation of Yields 

The temporal evolution of statistical indexes associated to the yield retrieval is illustrated for 
the years 2016 and 2017 (Figure 1a,b respectively), focusing on estimates based on NDVI 
(Normalized Difference Vegetation Index) and on the combination of different satellite reflectances. 
The statistical performance observed throughout the crop's agricultural season shows comparable 
general behavior, regardless of the year or the satellite data considered. A strong increase of 
accuracy is first observed with the cumulative number of satellite acquisitions used for estimating 
yields. In 2016, the 6 images acquired from April to July (days 106 to 192) allow the R2 to increase 
from 0.15 to 0.59, while RMSE decrease from 6.7 to 4.7 q.h−1 (considering the estimates based on the 6 
reflectances). In 2017, 7 images are acquired during the same period (days 96 to 186) and statistics 
show higher performances, the R2 increasing from 0.16 to 0.66 and RMSE decreasing from 5.1 to 3.4 
q.h−1. However, a notable difference is observed between the two considered years regarding the 
gain of accuracy. Indeed, the gain appears progressive in 2016, while the maximal increase is 
associated to the two images acquired at the end of June and at the start of July in 2017(days 176 and 
186). Such behavior is closely related to the growth dynamic of sunflower, which can vary from one 
year to the other through the combination of agricultural practices (especially the dates of sowing) 
and climatic conditions (e.g., cold or warm conditions which can reduce or accelerate the growth 
rate). Then, performances saturate at specific phenological stage (flowering) and only slight gain of 
accuracy is obtained by the addition of new satellite images. 

 
(a) (b) 
  

Figure 1. Temporal evolution of the statistical performance (coefficients of determination and root 
mean square errors, crosses and dots respectively) associated to sunflower yield forecast using NDVI 
(in grey) or the combination of six reflectances (in black), for the years 2016 (a) and 2017 (b). 

3.2. Mapping of Yields at the Intra-Plot Spatial Scale 

Finally, the two maps of yield obtained during the agricultural season 2016 are compared to the 
intra-plot measurements (Figure 2). The estimated maps of yield observed during the months of July 
and September are derived from the 6 or 10 successively acquired images, respectively. The maps 
present similar intra-plot spatial patterns of low and high values of yield and only few differences 
are observed between estimates performed two months before the harvest and those obtained just 
before the harvest (differences inferior to 2.8 q.ha−1, with a mean value of 0.7 q.ha−1). Such 
observation is confirmed considering all the pixel of the plot through the values of the averages of 
estimated yields (28.1 and 28.5 q.ha−1), the standard deviations (3.2 and 3.2 q.ha−1), or the range (from 
20.0 to 33.3 q.ha−1 and 20.2 to 34.1 q.ha−1). These two maps provide accurate estimates of the targeted 
variable (with relative error lower than 13% compared to measurements), nevertheless similar bias is 
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observed, that is, extreme low and high measured values are not well reproduced by the statistical 
approach. 

 
(a) (b) (c) 

Figure 2. Maps of sunflower yield estimated two months before the harvest (a) and just before the 
harvest (b), together with measurements (c) collected on a plot dedicated to the cultivation of 
sunflower in 2016. 

4. Discussion 

The ability of obtaining accurate early estimates of yield has been demonstrated in previous 
agronomic studies focused on wheat or corn [10–12]. Interesting performance are thus observed 
during specific crop phenological stages, i.e., during the elongation of the main stem of wheat or 
when the central stem of corn develops. For the sunflower, the accurate in-season estimates are 
observed during the first half of July, whatever the considered year. During this period, the fields 
cultivated with sunflower are observed at two characteristic phenological stages (BBCH scale 
numbers 5 and 6 [13]), corresponding to the inflorescence emergence and flowering. Moreover, the 
in-season performance observed for sunflower appear consistent with other studies based on the use 
of successive acquired optical and radar image [14,15], even if the yield estimates are not performed 
at the same spatial scale (intra-scale in the present study vs. field scale in the previous papers). In 
those studies, the levels of accuracy depend on both the considered crop (e.g., R2 = 0.76 and RMSE = 
7.0 q ha−1 for wheat, R2 of 0.69 and an RMSE of 7.0 q ha−1 for corn) and on the configuration of the 
satellite signals used as input variable of the statistical algorithm (i.e., several combinations of 
frequencies and polarizations combinations were tested). Nevertheless, the statistics were obtained 
with a limited number of ground truth (due to the difficulty to obtain precise information on yield, 
the number of fields ~30) and for a single agricultural season. In the present study, the robustness of 
the approach is tested considering two agricultural seasons and a large dataset of more than 
thousand measurements for each studied year. 

5. Conclusions 

The proposed study addresses the potential of using multi-temporal optical images (Landsat-8 
and Sentinel-2A) for the estimation of sunflower yields at the intra-plot spatial scale. The statistical 
approach takes advantage of both regular decametric satellite images acquired throughout two 
agricultural seasons and yield measurements collected on a network of plots. Random forests are 
implemented on independent training and testing sets, considering a forecast of yield throughout 
the agricultural season. 

In the present study, the data were collected by a surveying harvesting machine with GPS 
system on track mode which presents the following advantages: (i) The ability of working at a 
spatial scale consistent with the size of pixels and thus considering the intra-field variations of yield 
(which are merged when working at the field or at the regional scale) and (ii) Obtaining a large 
dataset, useful for testing the robustness of the proposed approaches (i.e., the algorithm being 
trained and validated on more than one thousand measurements). Moreover, the proposed 
approaches were solely based on a series of optical satellite images and tested on two successive 
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agricultural seasons, showing comparable trends and stability of the results regarding the levels of 
accuracy. 

The estimation of yield throughout the agricultural season provide a demonstration of the 
potential of real-time approaches by considering an increasing number of successive satellite images. 
Accurate in-season estimation of yields was observed two months before the harvest (R2 of 0.59 or 
0.66 and RMSE of 4.7 or 3.4 q ha−1 for the years 2016 and 2017). Moreover, the map of yield obtained 
during the crop flowering presented spatial patterns consistent with those estimated just before 
harvest (correlation close to 0.96 between the two estimated maps). 
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