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Abstract: The increasing trend of larch forests burning in the permafrost zone (60–65° N, 95–105° E) 
is observed in Siberia. Up to 10–15% of entire larch forests were damaged by wildfire during the 
last two decades. Current research analysed the reflectance and thermal anomalies of the 
post-pyrogenic sites under the conditions of permafrost. Studies are based on a long-term Terra 
and Aqua/MODIS (Moderate Resolution Imaging Spectroradiometer) survey for 2006–2018. We 
used IR thermal range data of 10.780–11.280 microns (MOD11A1 product) and we evaluated the 
Normalized Difference Vegetation Index (NDVI) from MOD09GQ product as well. The averaged 
temperature and NDVI dynamics were investigated in total for 50 post-fire plots under different 
stages of succession (1, 2, 5 and 10 years after burning) in comparison with non-disturbed 
vegetation cover sites under the same conditions. We recorded higher temperatures (20–47% 
higher than average background value) and lower NDVI values (9–63% lower than non-disturbed 
vegetation cover) persisting for the first 10 years after the fire. Under conditions of natural 
restoration, thermal anomalies of the ground cover remained significant for more than 15 years, 
which was reflected in long-term satellite data and confirmed by ground-based measurements. To 
estimate the impact of thermal anomalies on soil temperature and thawed layer depth we used the 
Stefan’s solution for the thermal conductivity equation. According to the results of numerical 
simulation, depth of the seasonal thawed layer could increase more than 20% in comparison with 
the average statistical norm under the conditions of excessive heating of the underlying layers. This 
is a significant factor in the stability of Siberian permafrost ecosystems requiring long-term 
monitoring. 
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1. Introduction 

Wildfire impact is the main factor that strongly affected the state of boreal ecosystems of 
Siberia. The post-fire changes in the vegetation cover in the larch forests of Central Siberia form 
conditions for significant changes in thermal balance. These changes can affect the seasonal thawed 
layer and its dynamics. Significant and long-term post-fire effects are well-documented in the 
permafrost zone of Siberia [1–5]. A number of the problems associated with vegetation cover 
disturbances have been discussed, such as degradation of seasonal thawed layer of permafrost as 
well as variation of temperature and water regimes of soils [3,6,7]. Post-fire changes in the thermal 
balance can result in the disturbance of the “transitional layer”, which protects the upper horizons of 
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permafrost [8]. Given the vast nature of the geographical area to be managed, satellite techniques are 
the primary means for wildfire monitoring in most parts of the boreal forest zone of Russia. 
Evaluation of the effects of fires on Siberian ecosystems also requires the usage of remote data. 

The main aims of this study are (i) to perform a quantitative analysis of thermal anomalies in 
fire-damaged areas of the permafrost zone of Siberia and its dynamics according to the stages of 
post-fire succession, and (ii) to obtain estimates of the depth of the seasonally thawed layer under 
conditions of excessive heat flux on the surface based on numerical modeling technique. 

2. Experiments  

2.1. Study Area 

The study area included the territory of Evenkia (central part of Siberia), covering the territory 
from 62° to 66° N and from 96° to 107° E (Figure 1). This region belongs to the Central Siberian 
flat-mountainous taiga region of the boreal taiga zone. Siberian larch (Larix sibirica, Larix gmelinii) is 
the dominant species in the forest stands. The study area belongs to the continuous permafrost zone 
according to the Circum-Arctic permafrost and ground ice map by the National Snow and Ice Data 
Center [9]. Large-scale wildfires are typical for the territory, which are detected by satellite 
monitoring only and are not served by fire protection systems. 

 

Figure 1. Study area in Central Siberia. Types of permafrost: 1—continuous (90–100% of territory); 
2—discontinuous (50–90%); 3—sporadic (10–50%); 4—isolated patches (0–10%); 5—remote sensing 
monitoring data on burned area in 2016–2018. 

2.2. Materials and Method 

Retrospective multispectral materials of Terra and Aqua/MODIS for the period 2006–2018, as 
well as information on wildfires in the format of geo-information polygonal layer [10], were used for 
post-fire plots selection. High resolution imagery (15–30 m) of Landsat/ETM/OLI (Enhanced 
Thematic Mapper/Operational Land Imager) and Sentilel-2 were used for wildfire geometry precise 
estimating. Multispectral data from Terra/Aqua and the retrospective imagery allows evaluation of 
long-term changes using both the “vegetation” channels of the spectrum and the thermal range. The 
characteristics of the post-fire area were determined by analyzing of spectral features in the range of 
λ1 = 0.620–0.670 μm, λ2 = 0.841–0.876 μm (product MOD09GQ) and in thermal band of λ3 = 10.780–
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11.280 μm (product MOD11A1)/(L2G and L3 https://lpdaac.usgs.gov/dataset_discovery/modis) 
[11,12]. 

Temperature, albedo and Normalized Difference Vegetation Index (NDVI) dynamics were 
investigated in total for 50 post-fire plots under different stages of succession (1, 2, 5 and 10 years 
after burning) in comparison with non-disturbed vegetation cover sites under the same natural 
conditions. Across the entire set of initial data, a 10-day average was performed taking into account 
the recovery succession stages. Dates of fires and post-fire stages were controlled using the attribute 
information of the wildfire databank [10]. 

Variety of the thaw depth of the permafrost layer (Z) was estimated depending on the thermal 
anomaly at the surface and vegetation recovery stage. Numerical modeling was based on the Stefan 
solution of the heat conduction equation for the depth of the seasonal thawing layer [4,13,14]: 










ul
TT fsf )(2

Z , (1)

where  is the density (kg/m3), T is the temperature of the surface (Ts) and the temperature of 
permafrost layer (Tf), x is the depth of the layer (m), λ is the thermal conductivity coefficient (W/(m 
°C)) for the thawing layer (λ1) and permafrost layer (λ2), τ is the duration of heating, l is specific heat 
of fusion (J/kg), u is the volumetric water content of soil (%). 

3. Results and Discussion 

Over the study area, fires were recorded on a total area of 12.743 MHa during 22 years of 
available instrumental observations. This is more than γ > 12.0% of forested areas; relative burned 
area (RBA) was 0.51  0.18% per year. Average RBA for Siberia is 1.19% [15]. For comparison, RBA is 
0.56% for the forests of Western Canada [16]. Significant “accumulative” effect from fires provokes 
large-scale anomalies of vegetation cover and thermal balance (Table 1). 

Table 1. The averaged characteristics of post-pyrogenic sites in the mid-summer (maxima of thermal 
anomaly). 

Time after Burning, Years Anomalies of NDVI, % Range of ΔT 
Maxima, °C 

Anomalies of Temperature, % 

1 53.5  10.7 6.57.2 40–50 
5 21.0  7.8 3.84.9 27–32 
10 9.0  5.0 3.44.6 15–20 

On the post-fire sites aged one year, the value of NDVI was typically 50  8% comparing to the 
non-disturbed plots. The deviation of NDVI (21  7%) abnormality was two times lower than the 
control values on the post-fire sites aged five years. Fire sites with an age of 10 years do not differ 
significantly from the control in terms of NDVI, which is caused by success restoration of on-ground 
vegetation cover. The mean deviation from control values did not exceed 9% with a significant 
dispersion of σ = 5%. Anomalies in vegetation cover are lost during the next 5–7 years after fire. 
However, the process of tree stands restoration is much longer, up to 50 years [5,7,17].  

For the same plots, vegetation anomalies correlate with data on mid-summer thermal 
anomalies as well (Figure 2a). The maxima of temperature abnormality stay significant more than 
10–15 years after a wildfire (Table 1, Figure 2). Absolute temperature maxima (ΔT) were fixed in the 
range of 7.0  1.5 °C during mid-summer for plots of burnt larch forest of Central Siberia. This is 20–
40% higher than the temperature of undisturbed sites. The rate of loss of thermal anomalies was 2.5 
times lower than the rate of vegetation restoration according to NDVI. The coefficients of 
exponential approximation are −0.08 and −0.2 (Figure 2b). 
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(a) (b) 

Figure 2. Experimental data on Normalized Difference Vegetation Index (NDVI) and temperature for 
post-fire plots relative to non-disturbed territories: (a) Thermal anomalies vs NDVI anomaly; (b) 
long-term dynamics of NDVI index anomalies averaged for June–August (1) and averaged thermal 
anomalies (2). 

  
(a) (b) 

Figure 3. Numerical modeling results on abnormal thaw depth after wildfire impact on vegetation 
cover: (a) Increment of the thawing layer depth vs. NDVI anomaly. Correlation of r = 0.72; (b) 
thawing layer depth anomaly during vegetation recovery: 1—one year after burning, 2–5 years after 
burning, 3–10 years after burning. 

Numeric simulation and field measurements [5,7,18] fix the average statistical norm of seasonal 
thawing of active soil layer at 0.6–2.0 m under conditions similar to the region of interest. As shown 
by the results of numerical simulation, the excess heat flux on the surface causes an increase in depth 
thawing (Z) on average by 10–20% (Figure 3) relative to the average statistical norm. Thawing of the 
soil profile is possible for an additional 0.5 m in depth under the conditions of stable anticyclone that 
are usually observed over the central part of Siberia during summer for up to 20–30 days [19] and an 
excessive insolation of the surface. Despite the fact that the maximum of the thermal anomaly is 
fixed in the middle of summer (Table 1), the maximum of thawing depth should be expected in 
August. The delay in temperature dynamics with depth of soil profile should be taken into account 
[20]. 

The results of satellite monitoring [4] and a number of ground-based experiments [7] allow us 
to state the long-term (15–25 years) effects of thermal anomalies on the post-fire sites of the 
permafrost zone. On post-fire plots, the NDVI values are restored 3 to 5 years after the fire. But 
surface temperature anomalies still can be considered as statistically significant 10–15 years after 

R 2  = 0.58

0

20

40

60

0 25 50 75 100
NDVI anomaly, %

Th
er

m
al

 a
no

m
al

y,
 %

y 2  = 41 . 7e–0 . 08x
R 2  = 0 . 81

y 1  = 57 . 6e–0 . 2x
R 2  = 0 . 98

0

20

40

60

0 5 10
Yeas after burning

N
D

V
I a

no
m

al
y,

 %
 

0

10

20

30

40

Th
er

m
al

 a
no

m
al

y,
 %

 

1
2

0

5

10

15

20

0.0 0.2 0.4 0.6
NDVI anomaly 

Z,
 %

r = 0.72

0

5

10

15

20

0.0 0.2 0.4 0.6
NDVI anomaly

Z,
 %

1 2 3

r = 0.7



Proceedings 2019, 18, 6 5 of 7 

 

burning. The low rate of vanishing of the thermal anomaly makes it possible to consider this factor 
of long-term influence on the state of the soil and the permafrost as one of the most significant. A 
similar effect was observed, in particular, in Alaska [6]. The obtained results are also consistent with 
the data for Russian forests [3,21]. This should be taken into account when assessing the state of the 
forests, tree mortality or monitoring of regeneration processes in the forests of the permafrost zone 
using satellite methods [22]. Temperature fields restored using the satellite data can be considered as 
the basis for monitoring the condition of forests of the permafrost zone of Siberia. 

Considering the predicted climate changes, the toughening of fire regimes and the increased 
fire activity in the forests of the permafrost zone [15,19,23–25], the integral effect of post-fire thermal 
anomalies will strengthen and is likely to grow increasingly. 

4. Conclusions  

Changes in thermal regimes of post-fire areas in Central Siberia are accompanied by an 
abnormal increase in average temperatures of the soil surface by ΔT = 7.2  1.3 °C. This is 20–40% 
higher than the temperature of undisturbed sites. The NDVI values are restored 3 to 5 years after the 
fire. The rate depends on the regeneration of the vegetation cover. The partial regeneration of 
vegetation covers does not compensate the changes, which lead to long-term temperature 
abnormalities. The thermal balance of post-fire sites with disturbed vegetation cover remain affected 
for more than 15 years.  

It was found that the abnormal temperatures on a significant area of the permafrost zone can 
result in a seasonal increase in the thawing depth of the soil by 10–20% when compared with the 
mean normal value. 

Vast post-fire disturbances (currently up to 12% of total forested area per the last two decades) 
of the vegetation cover in the northern regions of Siberia have a significant effect on the temperature 
regime of the “ground cover”–“soil”–“permafrost layer” boundary layer. A more detailed study of 
post-fire effects is important for predicting the response of boreal ecosystems to the fire impact, 
which currently tends to increase. 

The low rate of the thermal anomaly lost, at least in the first 10 years after the fire, makes it 
possible to consider this factor of long-term influence on the state of the seasonal thawed soil layer as 
one of the most significant. This technique and remote sensing data could be used for determining 
the stability of permafrost ecosystems. 
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MODIS Moderate Resolution Imaging Spectroradiometer 
NDVI Normalized Difference Vegetation Index 
RBA Relative Burned Area 
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OLI Operational Land Imager 
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