

Proceedings

Synergistic Effect of Nanocrystalline SnO₂ Sensitization by Bimetallic Au and Pd Modification via Ingle Step Flame Spray Pyrolysis Technique ⁺

Valeriy Krivetskiy 1,*, Konstantin Zamanskiy 2 and Alina Krotova 1

- ¹ Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119234, Russia; alinakrotova1996@mail.ru
- ² Faculty of Materials Sciences, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119234, Russia; zambahrs97@gmail.com
- * Correspondence: vkrivetsky@inorg.chem.msu.ru
- + Presented at the 8th GOSPEL Workshop. Gas Sensors Based on Semiconducting Metal Oxides: Basic Understanding & Application Fields, Ferrara, Italy, 20–21 June 2019.

Published: 19 June 2019

Abstract: Convenient and scalable single step flame spray pyrolysis (FSP) synthesis of bimetal AuPd sensitized nanocrystalline SnO₂ for gas sensor application is reported. The materials chemical composition, structure and morphology has been studied by XRD, XPS, HAADFSTEM, BET, ICP-MS techniques as well as thermo-programmed reduction with hydrogen (TPR-H₂). Superior gas sensor response of bimetal modified SnO₂ towards wide concentration range of reducing (CO, CH₄, C₃H₈, H₂S, NH₃) and oxidizing (NO₂) gases compared to pure and monometallic modified SnO₂ is reported. The observed enhanced gas sensor performance is concluded to arise from combination of facilitated oxygen molecule spillover on gold particles and electronic effect of Fermi level control by reoxidizing Pd-PdO clusters, homogeneously distributed over SnO₂ particles surface.

Keywords: metal oxide; semiconductor; gas sensor; sensitization; bimetal; flame spray pyrolysis

1. Introduction

The use of bimetallic nanoparticles (NPs) in order to sensitize semiconductor metal oxide gas sensors attracts more and more attention lately [1]. Particularly gold-containing NPs with Pt-group metals have been reported to provide profound improvements in certain gases detection [2–6]. Currently bimetallic NPs functionalized semiconductor metal oxides are obtained in a two step process: either separately prepared bimetallic nanoparticles or noble metal precursors with further reduction are being deposited on the previously synthesized metal oxide matrix. Such procedure is time and labor consuming and bears risks if introduction of impurities in the final nanocomposite or deviations of NPs content. In this work we report superior gas sensing properties towards a wide spectrum of gases of bimetal—Au and Pd—modified nanocrystalline SnO₂, obtained in single step via flame spray pyrolysis (FSP) technique.

2. Experimental

The design of custom made apparatus for materials synthesis, as well as synthesis protocol were based on the earlier reports of pioneering researchers [7]. Materials were characterized by XRD, ICP MS, XPS, STEM with EDX mapping, BET, TPR-H₂ techniques. Gas sensor performance was tested towards reducing and oxidizing gases in flow through sensor cell in DC mode.

3. Results

Parameters of synthesized samples are summarized in Table 1. XPS indicate presence of both Au and Pd on the surface of SnO₂ in a metallic state, however most part of Pd exists in the oxidized Pd²⁺ form. EDX mapping shows uniform homogeneous distribution of modifiers over the surface of bimetal modified sample. This nanocomposite demonstrates significantly higher response values towards both reducing and oxidizing gases compared to monometallic modified nanocomposites (Figure 1a–h).

Figure 1. Dependence of gas sensor response of synthesized materials on sensor working temperature towards (**a**) CO 20 ppm, (**b**) CH₄ 50 ppm, (**c**) C₃H₈ 50 ppm, (**d**) H₂ 30 ppm, (**e**) acetone ppm, (**f**) H₂S 1 ppm, (**g**) NH₃ 10 ppm, (**h**) NH₃ 10 ppm in dry air.

Sample		Au load		Dd Lood % mol	ICP MS, %mol		. d	C2/-
N⁰	Name	%, mass	% mol	Pa Load %, moi	Au	Pd	a, nm	$\sigma_{\text{BET}}, \mathbf{m}^2/\mathbf{g}$
1	SnO ₂						14	52
2	Au/SnO ₂	0.4	0.31		0.29 ± 0.02		10	70
3	Pd/SnO ₂			0.31		0.29 ± 0.02	11	69
4	AuPd/SnO ₂	0.2	0.15	0.15	0.16 ± 0.01	0.15 ± 0.01	11	58

Table 1. Parameters of synthesized nanocomposites.

4. Conclusions

The homogeneous distribution of Au and Pd component over the structure of nanocrystalline SnO₂ based nanocomposites, achieved by flame spray pyrolysis synthesis technique, gives rise to a superior gas sensor performance of thus obtained material. The excellent gas sensor properties arise from synergistic combination of chemical catalytic effect of gold and electronic effect of Fermi level control by surface Pd clusters, prone to switch to PdO state in oxidizing conditions and back to Pd⁰ in the presence of reducing component. Besides being a highly effective in achieving of such synergistic effect, FSP is proven to be a convenient technique, which allows to obtain a bimetallic modification of SnO₂ with Au and Pd components in a single synthetic step with high level of content control.

Acknowledges: The work was funded by Russian Science Foundation grant № 17-73-10491.

References

- 1. Kutukov, P.; Rumyantseva, M.; Krivetskiy, V.; Filatova, D.; Batuk, M.; Hadermann, J.; Khmelevsky, N.; Aksenenko, A.; Gaskov, A. Influence of Mono- and Bimetallic PtO_x, PdO_x, PtPdO_x Clusters on CO Sensing by SnO₂ Based Gas Sensors. *Nanomaterials* **2018**, *8*, 917, doi:10.3390/nano8110917.
- 2. Kim, S.; Park, S.; Park, S.; Lee, C. Acetone sensing of Au and Pd-decorated WO₃ nanorod sensors. *Sens. Actuat. B Chem.* **2015**, *209*, 180–185, doi:10.1016/j.snb.2014.11.106.
- 3. Li, G.J.; Cheng, Z.X.; Xiang, Q.; Yan, L.M.; Wang, X.H.; Xu, J.Q. Bimetal PdAu decorated SnO₂ nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. *Sens. Actuat. B Chem.* **2019**, *283*, 590–601, doi:10.1016/j.snb.2018.09.117.
- 4. Ma, R.-J.; Li, G.-D.; Zou, X.X.; Gao, R.Q.; Chen, H.; Zhao, X. Bimetallic Pt–Au nanocatalysts decorated In₂O₃ nests composed of ultrathin nanosheets for Type 1 diabetes diagnosis. *Sens. Actuat. B Chem.* **2018**, 270, 247–255, doi:10.1016/j.snb.2018.05.028.
- 5. Fan, F.Y.; Zhang, J.J.; Li, J.; Zhang, N.; Hong, R.R.; Deng, X.C.; Tang, P.G.; Li, D.Q. Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods. *Sens. Actuat. B Chem.* **2017**, 241, 895–903, doi:10.1016/j.snb.2016.11.025.
- Mutinati, G.C.; Brunet, E.; Koeck, A.; Steinhauer, S.; Yurchenko, O.; Laubender, E.; Urban, G.; Siegert, J.; Rohracher, K.; Schrank, F.; et al. Optimization of CMOS Integrated Nanocrystalline SnO₂ Gas Sensor Devices with Bimetallic Nanoparticles. *Procedia Eng.* 2014, *87*, 787–790, doi:10.1016/j.proeng.2014.11.679.
- Madler, L.; Sahm, T.; Gurlo, A.; Grunwaldt, J.-D.; Barsan, N.; Weimar, U.; Pratsinis, S.E. Sensing low concentrations of CO using flame-spray-made Pt/SnO₂ nanoparticles. *J. Nanopart. Res.* 2006, *8*, 783–796, doi:10.1007/s11051-005-9029-6.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).