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Abstract: One of the main goals of the cold baryonic matter (CBM) experiment at FAIR is to explore
the phases of strongly interacting matter at finite temperature and baryon chemical potential µB.
The equation of state of quantum chromodynamics (QCD) at µB > 0 is an essential input for the
CBM experiment, as well as for the beam energy scan in the Relativistic Heavy Ion Collider(RHIC)
experiment. Unfortunately, it is highly nontrivial to calculate the equation of state directly from
QCD: numerical Monte Carlo studies on lattice are not useful at finite µB. Using the method of Taylor
expansion in chemical potential, we estimate the equation of state, namely the baryon number density
and its contribution to the pressure, for two-flavor QCD at moderate µB. We also study the quark
number susceptibilities. We examine the technicalities associated with summing the Taylor series,
and explore a Pade resummation. An examination of the Taylor series can be used to get an estimate
of the location of the critical point in µB, T plane.

Keywords: quark number susceptibilities; QCD phase diagram; Taylor series and resummation;
fluctuation and freezeout

1. Introduction

The phases of strongly interacting matter at different temperatures, T, and baryon chemical
potential µB are of intense theoretical and experimental interest at present. Many contributions
emphasized how the understanding of the physics of compact stars depend on quantum
chromodynamics (QCD) at finite µB. In the experimental side, the beam energy scan (BES) runs
in Relativistic Heavy Ion Collider (RHIC) experiment are trying to explore the phase diagram of
QCD, and this is also the focus of the upcoming cold baryonic matter (CBM) experiment in the FAIR
facility. Just as the equation of state of QCD at large T played a crucial role in the understanding of the
ultrarelativistic heavy ion collisions in RHIC and LHC, the equation of state at µB > 0 is important
for the understanding of the BES and CBM experiment results. Unfortunately, it is highly nontrivial
to reliably extract the equation of state for µB > 0. For nonzero T but µB = 0, numerical Monte Carlo
simulations of lattice-discretized QCD allow one to calculate the equation of state nonperturbatively.
But such techniques cannot be used directly at finite µB.

One way to get nonperturbative information about QCD at moderate µB is through a Taylor
expansion in µB [1,2]; e.g., the pressure,

P(µB, T) = P(0, T) + ∑
n

χn
B(T)

µn
B

n!
. (1)
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The coefficients χn
B , called nonlinear baryon number susceptibilities, can be calculated

nonperturbatively on lattice. We will present calculations of χn
B and discuss their interpretation.

Then we will use the series Equation (1) to calculate the equation of state at moderate values of µB.
An examination of the first few terms of the series indicate that the series expansion breaks down at
some value of µB. We will argue that this is due to the presence of a critical point in the phase diagram
in µB, T plane, and provide an estimate of its location.

One can, of course, introduce a chemical potential for each flavor of quark; e.g., for two flavors

P(µB, T) − P(0, T) = ∑
nund

χnund

µnu
u

nu!
µ

nd
d

nd!
, χnu nd =

∂nu+nd P
∂µnu

u ∂µ
nd
d

. (2)

(For three flavors one will also have µs). The generalized quark number susceptibilities (QNS)
can be easily connected to susceptibilities of conserved charges; e.g., µu and µd can be traded for the
baryon number and isospin chemical potentials,

µB =
3
2
(µu + µd), µI = µu − µd. (3)

The primary quantities we will calculate will be the QNS χnund . We will use them to construct the
χn

B using Equation (3), and then use Equation (2) to calculate thermodynamic quantities at finite µB.
The baryon number susceptibilities have been used to get information about the freezeout curve.

In Section 3.3 we critically examine some issues that arise in such a comparison.
In Section 2 we briefly mention some technical details of our calculation. Our main results will be

presented in Section 3. A summmary of the results, and their discussion, will be presented in Section 4.
This report is based on Ref. [3], where more details can be found.

2. Calculational Details

We present results for a study of QCD with two degenerate flavors of staggered quarks. We use
lattices with lattice spacing a = 1/8T, with quarks a little heavier than physical quarks (pion
mass ∼ 230 MeV). We also compare our results with those from coarser lattices but similar fermion
discretization [4]. Using the R algorithm [5] configurations were generated in the range 0.9 Tc–2 Tc.
In this note Tc is used to indicate the crossover temperature at µB = 0, as determined by the peak of
the susceptibility of the Polyakov loop. The temperature scale is set using the Wilson flow observable
w0 [6] and two-loop running of the coupling.

Since our quark flavors are degenerate, χlm = χml . Calculation of the higher order susceptibilities
involve traces of products of matrices [7]. The traces were calculated with gaussian random vectors.
A careful study of stability of the traces was done. It was found that in the region around Tc, the higher
order susceptibilities stabilize only with a large number, ∼1000, of random vectors. We used 2000
vectors at these temperatures. At high temperatures results stabilize faster and 800 vectors were used.
Our error estimates are based on a complete bootstrap analysis over the configurations and random
vector sources.

3. Results

3.1. Quark Number Susceptibilities

The primary observables we measured were the generalized QNS. The baryon number
susceptibilities can then be constructed from them. The QNS are interesting observables in their
own right, as they reveal properties of the high temperature medium [8].

In Figure 1 we show some of the susceptibilities. In the left panel the diagonal susceptibilities
χn0Tn−4 of order n = 2, 4, 6 are shown. The second order susceptibility χ20 was the most interesting,
and dominated the equation of state calculations at small µB. It was small in the hadronic phase
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and rose rapidly after Tc, behaving as an approximate order parameter. The approach to the
Stefan–Boltzmann value was gradual. Note that this observable is known to have a strong lattice
spacing dependence for the free theory; this can be traced to a particular operator which contributes
only to this QNS [9]. It is therefore expected that at high temperatures, as one approaches the free
theory, there will be considerable lattice spacing dependence for this observable. Taking the ratio of
the lattice results with the corresponding lattice free theory results cancelled most of the cutoff effects,
bringing the lattice results close to the perturbative results [10,11] by 2 Tc [12]. On the other hand, in
the region around Tc, the results from a = 1/8T and a = 1/6T lattices agree quite well, indicating
that cutoff effects were small in this regime [3]. The diagonal fourth order QNS χ40 approached
perturbative results already by 1.5 Tc [12]. Close to Tc it deviated from perturbation theory and showed
a peak structure. The parameter χ60 had a peak structure just below Tc, and became negligible just
above Tc. These behaviors were consistent with trends seen in coarser lattices [13,14].

In the right panel of Figure 1 we show the results of the off-diagonal susceptibility χud. In the
hadronic phase, this observable was expected to be negative, as the u quark will be most often found
together with a d̄ in π+. On the other hand, at high temperatures in the QGP phase, one would expect
the u and d quark to be practically independent of each other, leading to χud ∼ 0 [15,16]. As the figure
reveals, χud came very close to 0 by 1.1 Tc. In this figure we also show the results on a coarser lattice [4].
The cutoff dependence was small; the Nt = 8 results can therefore be expected to be close to the
continuum results. This observable thus will severely constrain any model of quasibound structures in
QGP at such temperatures.
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Figure 1. (left) The diagonal susceptibilities of order two, four and six, χ20/T2, χ40 and T2χ60, in
the temperature range 0.9–2 Tc. (right) χ11 in units of T2, on lattices with a = 1/8T. Also shown for
comparison are results for lattices with a = 1/6T.

Using the QNS, we can construct the baryon number susceptibilities χn
B using Equation (3).

The results of the first three BNS are shown in Figure 2. These are also the coefficients appearing in the
series expansion in Equation (1). For analysis of physics at finite µB, we convert Equation (1) into a
series for χ2

B(µB). This series has a pole at the critical point (µE
B, TE),

χ2
B(µB, TE)

T2
E

∼
(
|µ2

B − (µE
B)

2|
)−ψ

+ regularterms. (4)

A Taylor series expansion of χ2
B in µB will therefore break down at µE

B. An examination of the coefficients

of the series gave us an estimate of the critical point in QCD phase diagram, µE
B

TE
= 1.85± 0.04, TE

Tc
=

0.94± 0.01. These estimates, on lattices with a = 1/8T, agreed well with earlier estimates on coarser
lattices with a = 1/6T.
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Figure 2. The baryon number susceptibilities of different order in the temperature range 0.9–2 Tc.

One cannot, of course, unequivocally predict a critical point from a finite series, less so a series
with four noisy terms. The value above is our estimate of the location of the critical point, assuming the
apparent finite radius of convergence is due to a critical region. Further confidence in this interpretation
is gained from the fact that the series at TE has all coefficients positive, as is required for the singularity
to be on the real axis, for all bootstrap samples. We also found that the estimate of radius of convergence
from ratios of different terms agree with each other [3]. Of course, the error quoted above, which
is the statistical error obtained from a complete bootstrap analysis, is dominated by the ratio of the
two smallest coefficients, i.e., χ4

B/χ2
B. We note that a recent determination of this ratio with improved

quarks [17] is consistent with our ratio at 2σ level, though not at 1σ level.
Recent lattice studies, based on imaginary chemical potential, have reported on the lack of

evidence for a critical point at small µB [18–20], while also commenting on the difficulty of putting
a rigorous bound from these methods [20]. Note that the phase diagram in imaginary chemical
potential is complicated; a more detailed investigation of the relation between computations in real
and imaginary µB will be very important.

3.2. Equation of State at Finite µB

Using the baryon number susceptibilities, the equation of state can be obtained using Equation (1)
and other series derived from it. Note, however, that the series will have very bad convergence
properties as one approaches the critical region. On summing a finite (≤4) number of terms in the
series, one may therefore get a completely wrong result.

One way to improve the convergence of the series and to increase the sensitivity to the critical
point is to use Pade resummation. In particular, a Pade resummation of

m1 =
∂ log χ2

B/T2

∂ µB/T
∼ ψ

|µ2
B − (µE

B)2|
+ regular, (5)

is expected to have much better convergence property in the critical region, where the singular term is
dominant [9]. To get predictions at finite µB, we therefore do a Pade resummation of the series for m1,
and get other observables by integrating Equation (5). In order to study the convergence property of
the resummation, we show in Figure 3a comparison between results of the second order susceptibility
obtained by resummation and by a direct summation of the series. At temperatures far from TE, the
two estimators are seen to agree. On the other hand, for the series at T = TE we see that the two differ
considerably even at µB � µE

B. We expect the Pade resummed series to capture better the property of
the series, and use it to extract observables at finite µB. Reassuringly, the µE

B from the Pade analysis
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agrees with that obtained from the radius of convergence analysis. See [3] for further details of the
Pade analysis.
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Figure 3. (left) Comparison of the Pade estimator for χ20 with the series-summed one at 2 Tc.
(right) Ratio of the Pade estimator of χ2

B with the series summed one, at TE = 0.94 Tc.

In the left panel of Figure 4 we show the results for χ2
B and ∆P(µB, T) = P(µB, T)− P(0, T) at

the temperature TE = 0.94 Tc, obtained from successive integrations of the Pade approximant for m1,
Equation (5). The error bars are from a complete Bootstrap analysis for each observable. Note that
the property of the impending breakdown of the series is captured in the Pade-resummed series by
an explosion of the bootstrap error. This property has been noted before in Ref. [9], and is related to
critical slowing down. This critical behavior gets successively milder as we do more integrations. In the
figure we have shown the series for T = 0.94 Tc, where the critical slowing down effect is strongest
since it is our estimated temperature for critical endpoint. However, the effect of the critical point is
seen also in other nearby temperatures.
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Figure 4. (left) The Pade-resummed results for pressure and χ2
B as function of µB, at T = TE.

(right) ∆P(µB, T) as function of temperature, at various µB.

The figure shows that χ2
B is only mildly dependent on µB for µB < T. As a result, the number

density n is approximately linear and ∆P is approximately quadratic in µB. The right panel of
Figure 4 shows our estimate of ∆P(µB, T) at various values of µB < 1.25T, i.e., away from the critical
region. A more complete set of results, including those for the number density and the isotropic bulk
compressibility, can be found in ref. [3]. As with χ20, we expect that the cutoff effect is strong at high
temperatures, and small in the temperature regime T . Tc. This can indeed be verified by comparing
with the two flavor results from coarse lattices in [9].
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3.3. Fluctuations and Freezeout

It has been suggested to use lattice observables like m1 to determine the freezeout surface [21,22].
The parameter m1, and other ratios of susceptibilities, are independent of the fireball volume. They
can be connected to event-by-event fluctuations of net proton number if certain assumptions about
the fireball are valid. The most important of these are: (a) the susceptibilities measured on the lattice
are for the net baryon number. On the other hand, the fluctuations measured in the experiments are
of the net proton number. For the comparison with the lattice susceptibilities to be meaningful, one
needs to assume that the fluctuations of net baryon number are closely mimicked by those of the net
proton number. (b) The fluctuation due to other, non-thermal sources need to be small compared to
the thermal fluctuations. The underlying assumption that the system is always in thermal equilibrium
up to Tc is probably too optimistic, especially as one comes closer to the critical region. We do not have
anything specific to add about this, however. In what follows, we will assume that susceptibility ratios
like m1 mirror the experimental net proton fluctuations, and comment on some other systematics.

Quantities like m1 are functions of µB, T; a comparison of such quantities with the corresponding
experimental observables is expected to give us the parameters of the freezeout surface. While this
idea has been used to map the freezeout surface from lattice [23,24], we would like to stress here the
role of the critical region and associated breakdown of the series, Equation (1), in such an extraction.
As we have discussed in the previous section, one needs to use a Pade resummation to get a reliable
result and also to get an idea of the asociated uncertainty in the series sum. To illustrate this, we have
compared our results for m1 with the corresponding fluctuation observable in the 200 GeV Au–Au
runs from the STAR experiment. Taking the net proton fluctuation ratio 0.150 ± 0.004 ± 0.06 [25]
(the first error is statistical and the second, systematic), we have done a bootstrap analysis, taking
the 68% confidence limit of the experimental observable and comparing with the lattice m1. A single
observable, m1, cannot be used to specify both µB and T for the freezeout surface. In the literature, the
freezeout temperature has sometimes been taken to be the chiral transition temperature, to extract µB.
Instead of making such an assumption, we instead chart out a band in the µB, T plane using m1. This is
shown in Figure 5.
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Figure 5. Estimation of the freezeout curve, from Pade estimation of m1.

The first observation from Figure 5 is that after a small value of µB, the temperature dependence
of the allowed band is very mild. Figure 5 indicates that the freezeout temperature is likely to be below
Tc. The Pade-resummed series allows us to come to this conclusion based on m1 alone. A finite series
sum would, instead, have allowed temperatures above Tc [3]. The second observation from Figure 5 is
that m1 is not a good observable to constrain µB of the freezeout surface. In the literature, making the
assumption that the freezeout temperature is the same as the chiral transition temperature, m1 has
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been used to extract the freezeout µB for the STAR 200 GeV run. Our results show that if one uses the
Pade resummed series, m1 does not constrain µB very well in this temperature regime.

In the literature, the standard way to estimate the freezeout curve is by fitting the particle yields to
a statistical hadronization model [26,27]. While such a fit has its own set of systematics, our discussion
above suggests that the method based on lattice susceptibilities, while theoretically attractive, is at the
moment not precise enough to replace it.

4. Summary and Discussion

In this report we presented results for quark number susceptibilities for two-flavor QCD on lattices
with cutoff a = 1/8T, in the temperature range 0.9–2 Tc. Here Tc is the crossover temperature at µB = 0
as determined by the peak of the Polyakov loop susceptibility. The major part of the cutoff dependence
of susceptibilities at high temperatures can be understood from the cutoff dependence of the free theory.
Interestingly, a strong coupling calculation of χ20 based on the gauge-gravity duality gives a result
very different from QCD [28]. Close to Tc the QNS show sharp temperature dependence, which are
very different from the behavior expected from perturbation theory. The off-diagonal susceptibility χ11

shows behavior consistent with weakly interacting quark-gluon plasma for T > 1.1 Tc; this observable
can be used to put strict constraints on models of quasibound structures in the QGP. A more detailed
discussion of these and higher order QNS can be found in [3].

The QNS can be used to construct the n-th order baryon number susceptibilities χn
B .

An examination of the first four (n = 2,4,6,8) BNS indicate a finite radius of convergence of the
series expansion of χ2

B(µB). To estimate the location of a possible critical point in the phase diagram,
we require that the series coefficients are all positive. Based on a bootstrap analysis, our estimate of

the location of the critical point is µE
B

TE
= 1.85± 0.04, TE

Tc
= 0.94± 0.01. The positivity of the series

coefficients on all bootstrap samples give us confidence in our analysis. Note that the error is statistical
and comes from an analysis of various ratios of χn

B , but it is dominated by the lowest ratio, i.e., χ4
B/χ2

B.

The estimate of µE
B is consistent with the earlier estimate µE

B
TE

= 1.8± 0.1 from coarser lattice [4].
To get thermodynamic observables at finite µB, we use the series in µB. But since the series

has finite radius of convergence, for µB close to this value a simple summing of the series will give
inaccurate results. Following [9] we do a Pade resummation of the series for m1 (Section 3.2). We
find that the Pole in the Pade approximant matches the radius of convergence extracted from the
series of χ2

B. Successive integration of the series for m1 then gives us the thermodynamic observables.
We present results for pressure and number density in Section 3.2. We note that the finite radius of
convergence of the series manifests itself in an explosion of the errorbar beyond a µB ∼ T. With more
integrations, e.g., for pressure, the singularity becomes softer, resulting in the statistical error being in
control to higher values of µB.

We also discuss connecting the susceptibility ratios like m1 to ratios of event-by-event fluctuation
observables, and attempt to estimate the freezeout curve using the experimental results for the latter.
The issues in connecting susceptibility ratios to fluctuation ratios have been discussed in the literature.
We investigate here a different issue: using the Pade resummed m1 rather than the series resummed
one, we find that the constraint put by m1 on the freezeout µB is very weak. On the positive side, we
find that the Pade resummed m1 indicates by itself that the freezeout temperature is likely to be below
Tc. Note that while this result is physically completely plausible to the point of sounding trivial, it has
not always come naturally in freezeout determinations from statistical hadronization.
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Abbreviations

The following abbreviations are used in this manuscript:

QCD quantum chromodynamics
QGP Quark-gluon plasma
BNS Baryon number susceptibilities
QNS Quark number susceptibilities
FAIR Facility for antiproton and Ion Research
RHIC Relativistic Heavy Ion Collider
CBM Cold Baryonic Matter
BES Beam energy scan
LHC Large Hadron Collider
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