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Abstract: A resolution over the existence of magnetic charges has eluded the high energy physics
community for centuries, and their search has gained momentum as recent models predict these may
be observable at current colliders. They appear in field theories in two forms: the widely studied
but heavily suppressed monopole with structure (soliton) and the not-so-well-covered point-like
monopole. The latter was first proposed by Dirac as the source of a singular magnetic field and
in effect symmetrises Maxwell’s equations. Following this line of research, work by S. Baines et al.
analysed these sources as matter fields that carry spins 0, 1

2 , or 1, in an effective field theory that is
perturbative for monopoles produced at threshold where the coupling strength g(β) is suppressed.
All three cases are currently under investigation by the MoEDAL collaboration at CERN, and the
theoretical expressions for kinematic distributions proposed in this work serve as guides to these
searches. The cross section distributions in each case are derived from a U(1) invariant gauge theory.
It is not assumed that, like the electron, the monopole’s magnetic moment is generated through
spin interactions at minimal coupling, as it may be quite large. Instead, the analytical expressions
in the spin 1

2 and 1 cases are kept completely general through the inclusion of a phenomenological
parameter κ, related to the gyromagnetic ratio gR = 1 + κ. In fact, the inclusion of this parameter
gives the effective theory validity in the high energy limit if the magnetic coupling scales with the
particle’s velocity β = v

c .
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1. Introduction

The theory of electromagnetism as formulated by Maxwell in 1873 is one of the most successful
theories of nature, surviving tests of general relativity and quantum mechanics. While it is accepted
that the model naturally incorporates electric charges, an isolated magnetic charge remains a concept
useful only for mathematical convenience, without a physical interpretation [1]. Monopole physics
has been a source of controversy since it’s formal conception by Dirac in 1931 [2,3]. Dirac proposed
that a single valued quantum mechanical wavefunction with a singular phase functional would
manifest its singularity as the presence of a magnetic source. The singularity corresponded to a
string whose orientation represented a gauge choice. Despite attempts by Weinberg, Schwinger,
Zwanziger, and others [4–6], observables derived from this model of point-like monopoles remained
both gauge-dependent and Lorentz-violating.

There has also been much success in deriving a topological structure with a net magnetic
charge in gauge theories of scalar fields with spontaneous symmetry breaking. The first was the
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t’Hooft–Polyakov monopole, derived from a broken SU(2) gauge theory in the adjoint representation.
This was recently followed by the discovery of the non-trivial second homotopy of the Standard Model,
which originates from a residual CP1 symmetry, by Cho and Maison [7], although it lacked a finite
solution. This divergence was resolved by extending the Standard Model using a string-inspired
Born–Infeld action in the hypercharge sector [8]. The Dirac string was interpreted as the axis along
which the U(1) electromagnetic potential was singular. That said, this monopole solution was derived
from a Lorentz-invariant theory and so the soliton must also be. Otherwise, this would signal a
fundamental breakdown in the analytical techniques of quantum theory. Hence, as these solitonic
monopoles are extended to objects that recover a point-like interpretation at distances far from the
structure’s core, there appeared to be a paradox. The questions of Lorentz and gauge invariance were
recently resolved by a re-summation of soft emissions in scattering processes [9] in a toy model of
monopoles involving perturbatively small magnetic couplings. But already in 1978, Urrutia showed
that monopole-charge-particle scattering in a limited region of phase space was gauge invariant in the
zeroth-order eikonal approximation [10]. In [11], it is thus assumed that the effective U(1) theories for
monopoles emerge from such gauge- and Lorentz-invariant considerations.

Analytical predictions of kinematic distributions would serve as invaluable guides in monopole
searches, such as those performed by the MoEDAL experiment at CERN, provided they fit within an
acceptable field theory. But the non-perturbative nature of the coupling has also hindered a meaningful
evaluation of scattering amplitudes in a quantum theory of monopoles. In the context of a dualised
electromagnetic theory, with charge quantisation

gqe =
1
2

n(4πε0c)ξ h̄c, n ∈ Z (1)

the magnetic coupling g is fixed as a large number, hence making the model non-perturbative. c is
the speed of light in vacuum, h̄ is Planck’s constant, ε0 is the vacuum permittivity, n is the linking
number, and ξ is 0 in CGS Gaussian units and 1 in SI units. However, a perturbative description
is recovered in the context of the low-energy effective field theory presented here and in the full
publication [11]. As in all effective field theories (EFTs), an effective coupling, in this case between the
monopole and the photon, is proposed that adequately describes the physics in the low-energy limit.
Motivated by arguments of classical scattering of monopoles off electrons [1,12–14], it is proposed
that the coupling is dependent on the Lorentz-invariant boost of the particle in the centre of mass
frame, β. Clearly, monopole production described from this EFT is relevant only if these particles are
produced at threshold where β� 1. In fact, for small enough β, this renders the effective coupling gβ

perturbative. In this non-relativistic limit, a limit of relevance to the MoEDAL experiment at CERN
[15] amongst others, the coupling becomes weak, and a perturbative theory is established. Hence,
Feynman-like graphs as in Figure 1 can be drawn within the context of this EFT only.

The total cross sections for monopole production by photon fusion were analytically derived
by Kurochkin et al. [16,17] for three different spin models, spins 0, 1

2 , and 1, using the dualised
vertex amplitudes for scalar quantum electrodynamics, (SQED), and the e−e−γ and W+W−γ Standard
Model vertices. But these amplitudes are very specific to the Standard Model Lagrangian and are not
transferable to a general theory of monopoles. Specifically, the spin 1

2 particle is defined in a minimally
coupling theory, mirroring the behaviour of the electron, with a magnetic moment generated through
spin interactions (gyromagnetic ratio ge = 1), while the monopole with spin 1 is assumed to behave
as the W boson, which gains a magnetic moment naturally through interactions generated in an
electroweak theory with spontaneous symmetry breaking, and hence adopting a gyromagnetic ratio
gW = 2 [16,17]. These assumptions cannot be made, and this calls for a more careful treatment in
monopole model building.
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Figure 1. Feynman-like tree-level graphs of (a): a Standard Model Drell–Yan (DY) process
for lepton production from quark annihilation, with appropriate electric charges qe; (b) DY
monopole–anti-monopole pair production from quark annihilation where g is the monopole’s magnetic
charge; (c) monopole–anti-monopole pair production via photon-fusion (PF) (for monopole spins 0, 1

2 ,
and 1); (d) additional (contact) diagrams for monopole–anti-monopole pair production via PF (for
monopole spins 0 and 1). The blob denotes the effective coupling. Wavy lines denote photons (γ),
while continuous lines denote either fermions (quarks (q), antiquarks (q), and charged leptons (l±)) or
monopole (anti-monopole) fields M (M) [18].

In the context of a perturbative coupling, this work introduces a model-independent way of
treating the magnetic moment, which influences amplitudes though a variable parameter κ. Using
this construction, the kinematic distributions for monopole production by Drell–Yan (DY) and photon
fusion (PF) processes, with diagrams drawn in Figure 1, are calculated. These are reduced to [16,17]
when the spin 1

2 fermionic monopole takes κ = 0 and the spin 1 monopole takes κ = 1, mirroring the
electron and W boson, respectively.

In Section 2, each spin model is treated analytically. A comparison of the three spin models is
given in Section 3 along with an assessment of their detectability at current colliders. Finally, the
conclusion appears in Section 4.

2. Analytical Calculations for Monopole Production Processes

In dualised theory, the magnetic coupling g is inversely proportional to the electric coupling qe, as
required by the quantisation condition (1), so that any process dependent on g is non-perturbative. But
the computation of scattering amplitudes involving monopoles requires the kinematics be confined
to the perturbative regime of the theory. If the coupling is β-dependant, the theory can be treated
perturbatively for monopoles produced at threshold. The coupling, and hence the magnetic structure
constant αg, are defined as

g(β) = gβξ , αg(g) =
g2(β)

4π
, β =

√
1− 4M2

s
, (2)

where ξ = 1 in a β-dependent model, and ξ = 0 in the equivalent (non-perturbative) β-independent
model. M is the monopole’s mass, and s is the centre of mass energy. (sqq is the centre of mass energy
of two colliding quarks in a DY process, and sγγ is that of two fusing photons in PF.)

Studies of the classical (tree-level) scattering of charged particles off magnetic monopoles as
in [1,12–14] motivated this β-dependence and is described more elaborately in [11]. As monopoles are
expected to have TeV scale masses, this classical (low β) limit is precisely the range relevant in current
and future collider experiments.

The choice of field theory is dictated by the spin of the monopole [11]. The spin 0 monopole theory
is represented by a dualised massive SQED, the spin 1

2 theory, by dualised massive QED, and the spin 1
monopole theory by a dualised U(1) gauged Proca theory. The latter two models are augmented by the
presence of spinor and bosonic magnetic moment terms, respectively, which scale with the unknown
dimensionless phenomenological parameters κ̃ and κ, respectively [11]. κ̃ = 0 and κ = 1 represent
the only renormalisable models at threshold and reproduce the Standard Model like couplings for
the electron in the fermionic model and the W boson in the bosonic monopole model. Each model
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describes the propagation and interactions of a monopole of mass M in a U(1) gauge-invariant theory.
The Lagrangian in each case gains a kinetic term for the gauge field represented by the square of the
field strength tenor Fµν = ∂µAν − ∂νAµ, a mass term for the monopole field, and a kinetic term for the
monopole field DµΦ, which contains a coupling to the gauge field through the covariant derivative
Dµ = ∂µ − ig(β)Aµ. Details on each Lagrangian and its content can be found in the full paper [11].
Staying in the confines of the perturbative regime at low β, vertex amplitudes for the DY and PF are
extracted, and kinematic variables are calculated analytically, along with their distributions.

2.1. The Spin 0 Monopole

The kinematics for a scalar monopole of mass M is already a well-studied topic ([15], for example).
It is mentioned here for completeness. This model generates a three- and a four-point vertex with
respective amplitudes

V3
µ = −ig(β)(p1 + p2)µ and V4

µν = 2ig2(β)gµν,

where gµν is the Minkowski metric and pi are monopole momenta. The kinematic distributions for
monopole pair production are derived analytically (see [11] for details) for PF and DY processes.

Pair Production by Photon Fusion

The kinematic distribution and total cross section for pair production by PF are derived from the
matrix amplitude, which combines the t-channel, u-channel, and seagull graphs, depicted between
their parent quarks in Figure 1c,d.

dσS=0
γγ→MM

dΩ
=

α2
g(β)β

2sγγ

{
1 +

[
1−

(
2(1− β2)

(1− β2 cos2 θ)

)]2}
, σS=0

γγ→MM =
4πα2

g(β)β

sγγ

[
2− β2 − 1

2β
(1− β4) ln

(
1 + β

1− β

)]
, (3)

where β =
(

1− 4M2

sγγ

) 1
2
. The production is manifestly central. The integrated cross section agrees

with [16,17] and is displayed graphically in Figure 2, as is the differential form in (3) for a monopole
with mass M = 1.5 TeV at √sγγ = 2Eγ, where Eγ = 6M. The total cross section on the right of Figure
2 disappears in the kinematically forbidden region M >

√sγγ/2, and the production is non-divergent.

Figure 2. Spin 0 monopole production by PF: (Left) These plots show distributions for pair production
in the centre of mass frame as functions of scattering angle θ and pseudo-rapidity η, which are focused
in the central region. The monopoles have mass M = 1.5 TeV and √sγγ = 2Eγ, where Eγ = 6M.
(Right) The total cross section varies slowly with monopole mass M at √sγγ = 4 TeV until it drops off
sharply in the kinematically forbidden region M >

√sγγ/2.

Pair Production by Drell–Yan

The kinematic distributions for monopole production by Drell–Yan as drawn in Figure 1b are
calculated assuming all quarks are massless.
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dσS=0
qq→MM

dΩ
=

5αg(β)αe

72 sqq
β3(1− cos2(θ)) and σS=0

qq→MM =
5παg(β) αe

27 sqq
β3, (4)

where β =
(

1− 4M2

sqq

) 1
2
. This last expression, as in all subsequent DY cases, is valid in experiments

with particle–anti-particle bunch crossings as in the case of the Tevatron and is doubled when using a
symmetric beam experiment such as the Large Hadron Collider (LHC). Equations (4) are drawn in
Figure 3 for a monopole with mass M = 1.5 TeV at √sγγ = 2Eγ, where Eγ = 6M. The production is
even more central that in the PF case, and the total cross section is non-divergent.

Figure 3. Spin 0 monopole production by Drell–Yan (DY): (Left) The figure shows that the production
from massless quarks, with M = 1.5 TeV and √sqq = 2Eq for Eq = 6M, is predominantly concentrated
in the central region. (Right) The total cross section for pair production in dualised SQED is finite, as
shown for √sqq = 4 TeV, in the same way as FP production was.

2.2. The Spin 1
2 Monopole

As stated in Section 2, the Lagrangian for the spinor monopole includes a moment term that scales
with κ̃ [11]. This parameter can be constrained through measurements of the magnetic moment of the
monopole, which now has a gyromagnetic ratio of gR = 2(1 + 2κ̃), but also through the only vertex
amplitude coupling the photon to monopoles.

V3
µ = −ig(β)

(
γµ +

1
2M

κ̃kσ[γσ, γµ]

)
, (5)

where kσ is the photon momentum and gµν is the Minkowski metric. Notice that the second term shows
explicitly that this effective field theory is non-renormalisable at scales k2 > M2. The mass-dependance
in the vertex amplitude is required on dimensional grounds.

Pair Production by Photon Fusion

Having vertex (5) only, spinor monopole pair production only has t- and u-channel contributions,
as depicted emanating from quark lines in Figure 1c. The κ̃-dependent differential cross section is

dσ
S= 1

2
γγ→MM

dΩ
=

α2
g(β)β

4sγγ(β2 cos2(θ)− 1)2 (−β6κ4s2
γγ cos6(θ)− 2β4(κ4s2

γγ + 4)

+ β2(48κ
√

sγγ − β2sγγ + 2κ4s2
γγ + 32κ2sγγ + 8)− β4 cos4(θ)((2β2 + 3)κ4s2

γγ

+ 8κ2sγγ + 4) + β2 cos2(θ)(2β4κ4s2
γγ + 8β2(5κ2sγγ + 1)− 48κ

√
sγγ − β2sγγ

+ 3κ4s2
γγ − 60κ2sγγ − 8) + (κ2sγγ − 2)2),

(6)
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where β =
√

1− 4M2

sγγ
. For κ = 0, Standard Model dual QED is recovered and the renormalisability

(finite cross section in the sγγ → ∞ limit) is restored. Figure 4 shows a scaling of distributions with κ̃

and a degeneracy between positive and negative κ̃. The total cross section is

σ
S= 1

2

γγ→MM
=

πα2
g(β)

3sγγ

(
3β4κ4s2

γγ ln
(1− β

1 + β

)
+ 6β4 ln

(1− β

1 + β

)
− 7β3κ4s2

γγ + 12β3 − 6β2κ4s2
γγ ln

(1− β

1 + β

)
+ 6β2κ2sγγ ln

(1− β

1 + β

)
− 72βκ

√
−(β2 − 1)sγγ − 36β2κ

√
−(β2 − 1)sγγ ln

(1− β

1 + β

)
− 36κ

√
−(β2 − 1)sγγ ln

(1− β

1 + β

)
− 15βκ4s2

γγ − 9κ4s2
γγ ln

(1− β

1 + β

)
− 132βκ2sγγ − 60κ2sγγ ln

(1− β

1 + β

)
− 24β− 18 ln

(1− β

1 + β

))
.

(7)

Setting κ = 0, expression (7) reduces to that given in the literature ([16,17] for example). As seen
in Figure 4, the κ̃ = 0 case remains the only unitary option in the sγγ → ∞ limit. Equation (7) also
diverges as M→ 0 (relativistic monopole) outside the perturbative regime for κ̃ 6= 0.

Figure 4. Spin 1
2 monopole production by PF: (Left) For M = 1.5 TeV and Eq = 6M, as κ̃ changes, the

distributions change only by a scaling factor, and production is concentrated away from the central
axis. (This contrast with the s=0 case is expected.) The κ̃ = 0, representing dualised QED, is unique
as the only renormalisable, unitary case. (Right) For various values of κ̃ 6= 0, the total cross section at
√sqq = 4 TeV diverges as M→ 0, where the monopole becomes non-relativistic.

Pair Production by Drell–Yan

The differential cross section distribution for fermionic monopole production by DY is represented

by an s-channel graph of the type shown in Figure 1b, where β =
√

1− 4M2

sqq
. Analytically,

dσ
S= 1

2
qq→MM

dΩ
=

5αeαg(β)

36sqq

(
β3(cos2(θ)− κ2sqq cos2(θ)− κ2sqq − 1) + β(4κ

√
sqq − β2sqq + 2κ2sqq + 2)

)
(8)

in the massless quark limit, and total cross section is

σ
S= 1

2
qq→MM

=
10πβαeαg(β)

27 sqq

(
3− β2 − (2β2 − 3)κ2sqq + 6κ

√
sqq − β2sqq

)
. (9)

Equation (8) happens to have a unitary behaviour, converging as sqq → ∞ for all κ̃ drawn on the left in
Figure 5. The production diverges as M→ 0 outside the perturbative regime, however, as shown for
κ̃ 6= 0 by Equation (9), drawn on the right in Figure 5.
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Figure 5. Spin 1
2 monopole production by DY: (Left) The angular and rapidity distributions for various

values of the parameter κ̃ demonstrate rather more contrasting behaviours between the κ̃ cases, unlike
the PF distributions, and also show a much more central production. Here, the monopole mass is
M = 1.5 TeV, and the quark energy is Eq = 6M. (Right) For various values of κ̃ 6= 0, the total cross
section at √sqq = 4 TeV diverges as M→ 0, where the monopole enters a non-relativistic regime.

2.3. The Spin 1 Monopole

Finally, the Lagrangian for the spin-1 monopole of mass M in a dualised gauge theory draws
from the Lee–Yan Lagrangian [19] and is further extended to include the magnetic moment term
proportional to a dimensionless κ which, could be constrained by magnetic moment measurements as
it contributes to the gyromagnetic ratio gR = 1 + κ. The three- and four-point vertex amplitudes are
also κ-dependent

V3
µνρ =− ig(β) (−gνµ(−κp2 + κp1 + p1)

ρ − gµρ(p2 + κp2 − κp1)
ν + gρν(p1 + p2)

µ) ,

V4
µνσρ =− 2ig(β)2(gµνgσρ) + ig(β)2(gµσgνρ + gµρgνσ) ,

(10)

where gµν is the Minkowski metric and pi are monopole momenta.

Pair Production by Photon Fusion

The amplitude for spin 1 monopole pair production by PF carries contributions from a t-channel,
a u-channel, and a seagull graph, shown between parent quark lines in Figure 1c,d. The differential
and total cross section distributions are calculated analytically for these amplitudes and are given by

dσS=1
γγ→MM

dΩ
=

α2
g(β)β

16 (β2 − 1)2 sγγ (β2 cos2(θ)− 1)2

(
48β8 + β6(κ − 1)4 cos6(θ)

− 144β6 + 2β4
(

3κ4 + 28κ3 + 42κ2 − 4κ + 79
)
− 2β2

(
11κ4 + 60κ3 + 58κ2 + 12κ + 35

)
+ β4

(
24β4 + 2β2

(
κ4 + 12κ3 − 10κ2 − 20κ − 7

)
+ 9κ4 − 36κ3 + 22κ2 + 28κ + 1

)
cos4(θ)

− β2
(

48β6 + 2β4
(

κ4 + 4κ3 − 34κ2 − 28κ − 55
)
− 4β2

(
3κ4 − 42κ2 − 8κ − 29

)
+ 35κ4 − 44κ3 − 78κ2 − 12κ − 29

)
cos2(θ) + 29κ4 + 44κ3 + 46κ2 + 12κ + 21

)
,

(11)

σS=1
γγ→MM =

πα2
g(β)

12(β2 − 1)2sγγ

(
− 72β7 + 288β5 − β3(−κ4 + 4κ3 + 282κ2 + 196κ + 263)

+ 6(β2 − 1)(6β6 − 6β4 + β2(κ4 + 8κ3 + 2κ2 − 8κ − 9)− 4κ4 − 16κ3 + 16κ2 + 8κ + 2) ln
(

1 + β

1− β

)

+ 3β(13κ4 − 20κ3 + 110κ2 + 44κ + 29)

)
,

(12)

respectfully, where β =
√

1− 4M2

sγγ
, and are shown graphically in Figure 6. While the differential forms

diverge for κ 6= 1 as sγγ → ∞, the total cross section has a power-law divergence as M→ 0, where the
perturbative argument is lost.
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Figure 6. Spin 1 monopole production by PF: (Left) For different values of κ, at M = 1.5 TeV, √sγγ =

2Eγ, and Eγ = 6M, the κ = 1 distributions are uniquely unitary, showing a depression of the cross
section in the central region. θ is the scattering angle, and η is pseudo-rapidity. (Right) The cross section
for all κ, at √sγγ = 4 TeV, diverges as M→ 0, where the monopole naturally becomes non-relativistic.

Pair Production by Drell–Yan

Last but not least, the kinematic distributions for monopole pair production by the s-channel
interaction, as in Figure 1b, are drawn using the analytical expressions in the massless quark limit

dσS=1
qq→MM

dΩ
=

5β3αeαg(β)

288 (β2 − 1) M2

(
3β4( cos2 θ − 1

)
+ β2(2κ2(cos2 θ + 1) + 8κ − 4 cos2 θ + 8

)
+ 2κ2(cos2 θ − 3)− 8κ + cos2 θ − 5

)
, (13)

σS=1
qq→MM =

5πsqqαeαg(β)

432M4

(
1− 4M2

sqq

) 3
2
(

8κ2 − (4κ2 + 12κ + 10)
(

1− 4M2

sqq

)
+ 12κ + 3

(
1− 4M2

sqq

)2
+ 7
)

, (14)

where β =
√

1− 4M2

sqq
. They are plotted in Figure 7. As an isolated process, the cross section distribution

converges as sqq → ∞ only for κ = 0. The unitarity of the model for κ = 1 is expected for the SM W
boson once all contributing s-channel electroweak processes are included, where the W and Z bosons
contribute as intermediate virtual states. This is, of course, not guaranteed for the monopole, which
does not couple to the W and Z bosons. Hence, the non-unitary behaviour is not surprising. The total
cross section also has a power-law divergence as M→ 0, as perturbation theory breaks down.

Figure 7. Spin 1 monopole production by DY: (Left) In the massless quarks limit, with M = 1.5 TeV
and √sqq = 2Eq at Eq = 6M, the value of κ influences the behaviour of the distribution but does not
on its own reflect the unitarity of the model in the κ = 1 case. (Right) The cross section for all κ, at
√sqq = 4 TeV, diverges as M→ 0, where the monopole naturally becomes non-relativistic.

3. A Comparison of the Total Cross Sections and Small Coupling Limits

At interaction energies relevant to colliders, such as
√

s = 4 TeV, PF dominates DY production
by a long shot (cf. Figure 8), independently of the value of κ(κ̃), as demonstrated in both the unitary
(Figure 8a–c) and arbitrarily chosen non-unitary (Figure 8d,e) cases.
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Figure 8. The production cross sections for PF decidedly dwarf those for DY at √sqq/γγ = 4 TeV.
Shown here are (a) s = 1 monopole production in the κ = 1 (SM-like) case; (b) the s = 1

2 case for κ̃ = 0;
(c) the only s = 0 case, which has no magnetic moment; (d) the s = 1 monopole cross section with
κ = 2; and (e) the s = 1

2 monopole cross section with κ̃ = 2.

As already discussed, the perturbative treatment is valid only for threshold pair production,
β << 1. However, this limit has the additional setback that it renders the production cross sections for
s = 1, 1

2 negligible for LHC-type experiments, for both DY and PF processes, in the well behaved cases,
κ(κ̃) = 1(0). This changes if the moment parameters are allowed to be very large, κ(κ̃) >> 1, even
while the derivative magnetic couplings in (5) and (10) are forced to remain perturbative overall (see
[11] for details). For a monopole momentum of order Mβ, this means

gκ′β2 < 1, κ′ = κ(κ̃) for s = 1 (1/2) . (15)

Then, after imposing a good infra-red behaviour as β → 0 and choosing a parameterisation that

satisfies (15) trivially, (κ′βg)4β

β→0
κ′→∞
= |c1| for some constant c1, the cross sections for PF become finite

non-negligible in the β→ 0 limit, towering over the still-trivial DY in both non-zero spin models.

σ
S= 1

2
γγ→MM

∼ (κ̃ g β)4 β

16 π M4 s
β→0

κ̃→∞
= finite, σS=1

γγ→MM

β→0
κ→∞
=

29 c1

64 π s
= finite,

σ
S= 1

2
qq→MM

∼ 5 αe

18 M2 (κ̃ β g)2 β
β→0

κ→∞→ 0, σS=1
qq→MM

β→0
κ→∞
= αe

10
√
|c1|

27 s
β

5
2

β→0
κ→∞→ 0.

4. Conclusions

In this article, it is argued that the dualised field theory for monopoles has a perturbative regime
where the coupling of such particles to matter is small due to its dependence on the monopole boost
β << 1 in the centre of mass frame. Monopole models with spins 0, 1

2 , and 1 are studied and
a new phenomenological parameter κ is included, parameterising an unknown magnetic moment
contribution to the cross sections. The differential and total cross section distributions are calculated
analytically and displayed graphically for monopole pair production by Drell–Yan and photon fusion.
In order to make experimentally relevant distributions, these parton-level amplitudes should be
convoluted with appropriate parton density functions. Models with different κ values are contrasted
and the SM-like couplings, κ1(1/2) = 1(0), which give the bosonic and fermionic monopole moments
identical to the SM W boson and electron, respectively, stand out as unitary preserving. PF is clearly
seen to dominate over DY at energy scales relevant to current colliders. Finally, allowing κ to become
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large while remaining in the perturbative regime generates production rates by PF accessible to current
collider experiments, such as MoEDAL at CERN, in the non-zero spin models.
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