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Abstract: We study energy-transfer processes from a given quantum system, termed charger, to
another one, i.e., the proper battery both in a closed and in an open quantum setting. We quantify the
fraction EB(τ) of energy stored in the battery that can be extracted in order to perform thermodynamic
work. We show that there can be a substantial gap between the average energy and the extractable
work due to correlations created by charger–battery interactions.
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1. Introduction

Quantum phenomena, such as phase coherence and entanglement, constitute remarkable
resources that may enable superior performances of future technological devices. Given this context,
a number of researchers has been working on quantum batteries [1–3], i.e., quantum mechanical
systems for storing energy. Here, using the concept of ergotropy [4] we quantify the fraction EB(τ) of
energy stored in the B battery that can be extracted in order to perform thermodynamic work.

2. Results

A general framework to describe the charging process of a QB has been introduced in Refs. [5–7].
Here a first quantum system A acts as the energy “charger” that either directly injects, or facilitates
the injection of energy into a second quantum system B that instead represents the proper battery of
the model. In the simplest version of the scheme [5,6], A and B are assumed to be isolated from the
outside world and characterized by local HamiltoniansHA andHB that for the sake of convenience
are selected to have both zero ground-state energy. At time t = 0 the global system starts in a pure
factorized state |ψ〉A ⊗ |0〉B, with |0〉B being the ground state of HB, and |ψ〉A having mean local
energy EA(0) := A〈ψ|HA|ψ〉A > 0. By switching on a coupling Hamiltonian H(1)

AB between the two
systems, our aim is to transfer as much energy as possible from A to B, in some finite amount of time τ,
the charging time of the protocol. For this purpose we write the global Hamiltonian of the model as
H(t) := HA +HB + λ(t)H(1)

AB where λ(t) is a classical parameter that represents the external control
we exert on the system, and which we assume to be given by a step function equal to 1 for t ∈ [0, τ]

and zero elsewhere. Accordingly, indicating with |ψ(t)〉AB the evolved state of the system at time t, its
total energy E(t) := AB〈ψ(t)|H(t)|ψ(t)〉AB is constant at all times with the exception of the switching
points, t = 0 and t = τ. For the sake of simplicity we assume H(1)

AB to commute with the local terms
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HA +HB. Under this condition, the energy that moves from A to B can be expressed in terms of the
mean local energy of the battery at the end of the protocol, i.e., the quantity

EB(τ) := tr[HBρB(τ)] , (1)

ρB(τ) being the reduced density matrix of the battery at time τ. Even in this simplified scenario,
an important question to ask is whether or not the quantity EB(τ) represents the full amount of
energy that one could recover from the loaded battery B, without having direct access to charger A (a
reasonable scenario in any relevant practical applications where charger A is not available to the end
user). As explicitly discussed in Ref. [6], this is not always the case as part of EB(τ) can be intrinsically
locked by the correlations AB have established during the charging process. The part of the energy of
B which is free for future use is instead given by by the ergotropy [4] of the state ρB(τ):

EB(τ) := tr[HBρB(τ)]−minUtr[HBUρB(τ)U†] , (2)

which by construction is always smaller than or equal to EB(τ) (the minimization being performed
over the set local unitary transformations acting on B).

The situation becomes even more complicated when the charger–battery system is no longer
isolated from its environment, as now, besides losses which may directly remove energy from B, the gap
between EB(ρB) and EB(ρB) can increase due to extra correlations the battery may have established
with the AB surroundings. This scenario has been considered in Ref. [7] where the charger A is
assumed to play the role of a passive transducer that simply helps the loading of energy into B from
external sources described as classical coherent fields via a local Master Equation approach [8].

In the following, by considering some specific examples, we analyze the relations between EB(ρB)

and EB(ρB) both for the closed and for the open AB model.

3. Discussion

3.1. Closed AB Scenario

To describe the charger–battery model in the closed scenario we consider here the case where B
is a two-level quantum system (qubit) while the charger A is a harmonic oscillator with frequency
ω0 that matches the energy gap of the battery (hereafter we take h̄ = 1). As in Ref. [5] we assume
their interaction to be governed by the Jaynes–Cummings Hamiltonian [9], a paradigmatic model to
describe light–matter coupling. Accordingly, we write

HA := ω0a†a , HB :=
ω0

2
(σ

(B)
z + 1) , H(1)

AB := g(a†σ
(B)
− + aσ

(B)
+ ) , (3)

where a† (a) is the creation (destruction) bosonic operator acting on A, σ
(B)
− , σ

(B)
+ , and σ

(B)
z are,

respectively, the lowering, raising and Pauli-z operators of B, and where finally g is the coupling
strength parameter of the model.

Consider then first the case where initially A is described by a Fock state |n〉A with n = K photons
(B being instead in its ground eigenstate ofHB). By direct integration of the equations of motion we obtain

EB(τ) = ω0 sin2(g
√

Kτ) , EB(τ) =
ω0

2

[
| cos(2g

√
Kτ)| − cos(2g

√
Kτ)

]
. (4)

As evident from panel (a) of Figure 1 in this case the gap between the ergotropy of B and its mean
energy closes only when the charging time is an integer multiple of π/(2g

√
K), with full loading of

the battery occurring only for the odd integers. On the contrary, the system exhibits large intervals of τ

where EB(τ) is exactly null.
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A rather different behavior is observed instead when assuming A to be initialized into a coherent

state |α〉A = exp
(

αa† − α∗a
)
|0〉, |0〉 being the ground state of the harmonic oscillator. In this case

Equations (1) and (2) yield

EB(τ) = ω0

∞

∑
m=0

p(K)m sin2(g
√

mτ) , EB(τ) =
ω0

2

(√
r2

z(τ) + r2
y(τ) + rz(τ)

)
, (5)

where for m integer p(K)m := Ke−K/m!, rz(τ) := −∑m p(K)m cos2(2g
√

mτ), ry(τ) :=

∑m K
2m+1

2 e−K/
√

m!(m + 1)! 2 cos(g
√

mτ) sin(g
√

m + 1τ), and where K = |α|2 gauges once more
the input mean energy of A via the identity EA(0) = ω0K. As shown in the panels (b,c) of Figure 1, in
this case EB(τ) becomes zero only for isolated values of τ, a property which ultimately can be related
to the fact that coherent states are optimal in minimizing the amount of correlations produced during
the dynamics [6]. Furthermore, as expected from semiclassical considerations, in the high mean input
energy limit (i.e., K → ∞), the ergotropy EB(τ) approaches asymptomatically EB(τ), (see also panel
(c)). In this regime it also occurs that the maximum value of EB(τ) can reach the full charging threshold
ω0 for τ = π/(2g

√
K).
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Figure 1. In panel (a) we plot EB(τ)/ω0 (black solid line) and the ergotropy EB(τ)/ω0 (red dashed
line) for the closed AB scenario, as a function of gτ choosing as initial state for charger A a Fock state
|n〉 with n = K excitations. In panel (b,c) we plot the same quantities choosing as initial state for the
charger a coherent state with K mean number of excitations. In panel (b) we set K = 3, in panel (c) we
set K = 30.

3.2. Open AB Scenario

As anticipated in the introduction in the open AB scenario [7], the charger acts merely as a
mediator between B and the external world whose contribution is represented via a local Master
Equation [8]. Specifically, in this case we describe the evolution of the joint density matrix ρAB(t) of
AB in terms of the following differential equation

ρ̇AB(t) = −i [HA +HB, ρAB(t)] + λ(t)LAB(t)[ρAB(t)] , (6)

where, as in the previous section HA and HB represent the local Hamiltonians of A and B and λ(t)
is the step-like control function. The term LAB(t) on the contrary is a (possibly time dependent)
Gorini–Kossakolski–Sudarshan–Lindblad (GKSL) super-operator [10,11]

LAB(t)[· · · ] := −i
[
∆HA(t) +H(1)

AB , · · ·
]
+D(T)

A [· · · ] , (7)

which includes a temperature dependent dissipative contribution D(T)
A and a Hamiltonian term

which accounts both for the AB interactionsH(1)
AB and for the classical driving ∆HA(t) of the charger.

Assuming then the AB system to be initialized into the ground state configuration ρAB(0) = |0〉 〈0| ⊗
|0〉 〈0|AB of their respective Hamiltonians, one can study the charging of B through the mediation of
A by focusing once more on the quantities (1) and (2). In Figure 2 we report the behaviors of these
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quantities obtained for the case where as in Section 3.1, B is a two level system and A is a harmonic
oscillator of frequency ω0 resonant with the energy gap of the battery (different configurations are
considered in Ref. [7]): accordingly, we now take ∆HA(t) := F(e−iω0ta† + h.c.), as a driving term for A, and

D(T)
A [· · · ] := γ (Nb(T) + 1) Da[· · · ] + γNb(T)Da† [· · · ] , (8)

with Nb(T) being the Bose occupation number Nb(T) := 1
eω0/(KbT)−1

of the thermal bath coupled to

A, γ being a constant characterizing the dissipation rate, and Dθ [· · · ] := θ[· · · ]θ† − 1
2{θ†θ, · · · } . As

evident from a comparison between panels (a) and (b) of the figure, increasing the bath temperature,
while increasing the mean energy on B, typically tends to deteriorate the ergotropy level in the system
(exceptions to this however have been reported in Ref. [7]). Panel (c) of Figure 2 instead shows that
for large F and low T, the behavior of EB(τ) and EB(τ) keep some resemblance with the functional
dependence observed in the semiclassical limit of the closed case scenario, i.e., panel (c) of Figure 1.
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Figure 2. Plots of EB(τ)/ω0 (black solid line) and the ergotropy EB(τ)/ω0 (red dash-dotted line) as a
function of gτ in the open AB scenario. Panel (a) presents the case Nb(T) = 0 , F = 0.05ω0 ; Panel (b):
Nb(T) = 0.05 , F = 0.05ω0 ; Panel (c): Nb(T) = 0 , F = ω0 . All plots were obtained for g = 0.2ω0 and
γ = 0.8ω0. Notice the different scales on the ordinate axis in the three panels.
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