
proceedings

Proceedings

Continuous Measurements for Advanced Quantum
Metrology †

Francesco Albarelli 1,2,* , Matteo A. C. Rossi 2,3 , Dario Tamascelli 2 and Marco G. Genoni 2

1 Department of Physics, University of Warwick, Coventry CV4 7AL, UK
2 Quantum Technology Lab, Dipartimento di Fisica ‘Aldo Pontremoli’, Università degli Studi di Milano,

IT-20133 Milan, Italy; matteo.rossi@utu.fi (M.A.C.R.); dario.tamascelli@unimi.it (D.T.);
marco.genoni@fisica.unimi.it (M.G.G.)

3 QTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy,
University of Turku, FI-20014 Turun Yliopisto, Finland

* Correspondence: francesco.albarelli@gmail.com
† Presented at the 11th Italian Quantum Information Science Conference (IQIS2018), Catania, Italy, 17–20

September 2018.

Published: 4 December 2019
����������
�������

Abstract: We review some recent results regarding the use of time-continuous measurements for
quantum-enhanced metrology. First, we present the underlying quantum estimation framework
and elucidate the correct figures of merit to employ. We then report results from two previous
works where the system of interest is an ensemble of two-level atoms (qubits) and the quantity to
estimate is a magnetic field along a known direction (a frequency). In the first case, we show that, by
continuously monitoring the collective spin observable transversal to the encoding Hamiltonian, we
get Heisenberg scaling for the achievable precision (i.e., 1/N for N atoms); this is obtained for an
uncorrelated initial state. In the second case, we consider independent noises acting separately on
each qubit and we show that the continuous monitoring of all the environmental modes responsible
for the noise allows us to restore the Heisenberg scaling of the precision, given an initially entangled
GHZ state.
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1. Introduction

The ability to measure physical quantities with extreme precision is vitally important for the
advancement of both fundamental science and technology and the ultimate limits to the precision
of the estimation of physical parameters are dictated by quantum mechanics. In particular this has
been studied in the context of quantum technologies, since it is possible to take advantage of purely
quantum mechanical phenomena to obtain a precision which would not be possible in the classical case
with the same resources. This field of scientific enquiry goes under the name of quantum metrology [1].

Quantum systems are not isolated and they interact with an environment; this interaction usually
leads to a loss of genuine quantum features, such as entanglement and coherence. This kind of
dynamics is generically called “noisy”. Here, we restrict to Markovian noisy dynamics, described
by Lindblad master equations. Roughly speaking, this assumption means that the system interacts
with a “new instance” of the environment at each time, always in the same state. The description of
continuous measurements that we adopt assumes this Markovian limit. Specifically, the continuous
monitoring of the system can be understood as the result of continuous “strong” measurements of the
environment after it has (weakly and instantaneously) interacted with the system.

Mathematically, the evolution of the density operator of the system is governed by a so-called
stochastic master equation [2]. A solution (also called a quantum trajectory) corresponds to a stream
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of observed measurement outcomes, which are of course stochastic in nature. This is also called the
conditional evolution of the system, since it is conditioned on the observed outcomes. The average state
of a continuously monitored system (i.e., the so called unconditional state, obtained by discarding
measurement results) corresponds to the state undergoing a noisy Lindblad evolution.

This manuscript is a succinct review of some of our recent results, where we show that
continuously monitored quantum systems are useful for high-precision quantum metrology. Even
if continuously monitored quantum systems have been studied in a metrological context before, see
e.g., [3–5], our approach and results represent a new contribution to the field.

First, in Section 2 we briefly review the statistical tools to quantify the achievable precision in this
scenario. In Section 3 we present two applications of this metrological framework to ensembles
of two-level quantum systems (qubits); in particular the results obtained in [6] for a collective
measurement in the large number of atoms limit and the more recent results in [7] for independent
environments acting on every qubit. We show that the continuous monitoring can either give rise or
restore Heisenberg scaling.

2. Materials and Methods

2.1. Stochastic and Lindblad Master Equations

The evolution of the conditional state of a continuously monitored quantum system is described
by a stochastic master equation (SME). We restrict to Markovian SMEs, which physically correspond
to sequential monitoring, i.e., the output modes (roughly speaking, the environment right after
the interaction with the main system) are sequentially and instantly measured. As an example,
we report here the stochastic master equation corresponding to homodyne detection (HD) of the
environmental modes:

dρ(c) = −i[Ĥ, ρ(c)] dt + ∑
j
D[ĉj]ρ

(c) dt +
√

η ∑
j
H[ĉj]ρ

(c) dwj , (1)

here dwj = dyj −
√

ηTr[$(c)(ĉj + ĉ†
j )] represent independent Gaussian stochastic processes (Wiener

increments satisfying dwjdwk = δjkdt). The measurement results are given by dyj and they represent
the expectation value of th operator (ĉj + ĉ†

j ) plus Gaussian fluctuations. The operators ĉj can be
arbitrary operators on the system and they are determined by the interaction between the system
and the environment; η represents the efficiency of the monitoring (assumed to be equal for all the
environmental modes). We have also introduced the superoperator D[Â]• = Â • Â† − 1

2
{

Â† Â, •
}

.
The corresponding Lindblad master equation (ME) is obtained by averaging over the trajectories (since
E
[
dwj
]
= 0):

dρ(t)
dt

= Lρ(t) = −i
[
Ĥ, ρ(t)

]
+ ∑

i
D[ĉi]ρ(t) . (2)

Different SMEs can correspond to the same Lindblad equation; these different SMEs are said to be
different unravellings of the same ME. Another common and useful unravelling is obtained when the
environment output modes are measured by a photo-detector (PD); in this case the stochastic part is
given by Poisson increments [2], which are not real valued as dwj, but binary valued (i.e., 0 or 1).

2.2. Cramér-Rao Bounds

We analyse the precision of an estimate of the value of a physical parameter in the context of
local quantum estimation theory [8]. According to the Cramér-Rao bound of classical statistics, the
precision (standard deviation) of any unbiased estimator for a parameter ω is lower bounded as
δω ≥ 1√

MF [p(x|ω)]
where M is the number of repetitions of the experiment and F [p(x|ω)] is the

classical Fisher information (FI). For a quantum system the probability is given by the Born rule
p(x|ω) = Tr[$ωΠx], where $ω is a family of quantum states parametrized by ω, and Πx is a POVM
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operator describing the measurement process. By optimizing over all the possible POVMs we obtain
the quantum Cramér-Rao inequality δω ≥ 1√

MF [p(x|ω)]
≥ 1√

MQ[$ω ]
, where Q[$ω ] is the quantum

Fisher information (QFI) [8] of the state $ω.
For a continuously monitored system there is a continuous (in time) stream of measurement

outcomes, e.g. the photo-currents yj(t) =
∫ t

0 dyj for the case of HD described by Equation (1). The
probability of observing a particular stream of outcomes is also the probability of having a particular
conditional state (a trajectory) and we generically call this probability ptraj. The statistics of these
outcomes will in general give information about the parameter of interest, which usually appears in
the Hamiltonian of the system. Furthermore, the final conditional state at the end of the monitoring
will also depend on the parameter and it can be measured by an arbitrary POVM. We assume that it is
possible to choose the optimal POVM on the final conditional state, so that the relevant figure of merit
for the precision of the estimation is the QFI of such state.

In [6] we have shown that for systems undergoing this kind of evolution the correct bound which
combines the information coming from the continuous monitoring and the final measurement on the
conditional state is δω ≥ 1√

MQ̃unr
, where we introduced the effective QFI (eQFI), defined as

Q̃unr = F [ptraj] + ∑
traj

ptrajQ[ρ(c)] . (3)

The classical Fisher information F [ptraj] corresponding to the continuous measurement itself can
be obtained by sampling trajectories from the SME, as proposed in [9] (and in [10] for Gaussian states).
Building on these reults, in [7] we have proposed an algorithm to reliably obtain the eQFI, by adapting
numerical approach of [11] based on Kraus operators.

A more fundamental quantity, which we dubbed “ultimate” QFI (uQFI) is the QFI QL of the
whole system and environment state (considering all the output modes). Under our Markovianity
assumption this quantity can be obtained by solving a modified master equation [12]. The uQFI
depends only on the Lindbladian L and not on the particular unravelling, while the eQFI Q̃unr

pertains to a particular choice of measurement on the environmental modes, i.e., to a particular
unravelling, hence the subscript. We stress that, while stochastic master equations like Equation (1)
correspond to sequential monitoring schemes, the uQFI is optimized over all possible measurements on
the system plus the environmental modes that have interacted with it. This includes schemes where
the measurement of the environmental modes is performed in more complicated ways and we have
no a priori reason to believe that the eQFI of sequential schemes can saturate the uQFI. Nonetheless in
the relevant cases we have considered we have always found optimal sequential schemes where the
two quantities are equal.

We can summarize the situation with the following inequalities

Q[$unc] ≤ Q̃unr,η ≤ QL , (4)

where Q[$unc] is the QFI of the unconditional state given by the Lindblad ME (2) and we have also
stressed that the eQFI depends on the efficiency η of the detection. The first inequality is given by the
extended convexity of the QFI [13] and supports the intuitive idea that one can only gain information
about the parameter by monitoring the environment.

3. Results

We consider an ensemble of N two level atoms interacting with a constant external magnetic field
along a direction. The Hamiltonian of the system is Ĥω = ω Ĵz, where Ĵα are collective spin operators,
defined as Ĵα = 1

2 ∑N
i=0 σ

(i)
α for α = x, y, z (here σ

(i)
α denotes Pauli matrices acting on the i-th spin),

while the frequency ω is proportional to the intensity of the magnetic field. We have studied this
paradigmatic metrological problem of frequency estimation in two very different conditions.
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3.1. Collective Coupling with Initial Separable State

In [6] we assumed an initial pure separable state |ψ(0)〉 = ⊗N
k=0

1√
2
(|0〉k − i|1〉k), where all the

two-level atoms have a spin directed in the positive y direction (the state is a product of eigenstates
of σy). We considered the monitoring of a single collective operator ĉ =

√
κ Ĵx, transversal to the

Hamiltonian, by performing homodyne detection on the environment; this amounts to a continuous
non-demolition measurement of the collective spin Ĵx and it is described by Equation (1). For short
times and small frequency ωt� 1 and for large N the system can be described by continuous variables
and we can reduce to study the dynamics of a Gaussian state (essentially we only need first and second
statistical moments of Ĵz and Ĵx) and obtain analytical results.

Under these assumptions, we have shown that by continuously monitoring Ĵx the eQFI about the
parameter ω shows Heisenberg (quadratic) scaling in the number of atoms N. This remains true for
every value of the efficiency, at the expense of increasing the number of atoms and the observation
time, see also [14]. We have also shown the optimality of the scheme in the case of perfect efficiency, by
proving that that the eQFI is equal to the uQFI. In this setting, the continuous monitoring creates a spin
squeezed (multipartite-entangled) conditional state, which is a resource for quantum metrology. As a
matter of fact both terms in the eQFI (3) show Heisenberg scaling, but the sum is needed to achieve
optimal precision.

3.2. Independent Noises with Initial Entangled State

In [7] we considered the prototypical case of noisy quantum metrology: N independent
environments acting on the qubits, given by N n different noise operators ĉj =

√
κ/2σ

(j)
α ; we restricted

our study to α = z (parallel-noise, or pure dephasing) and α = x (transverse noise). In this situation
the metrological resource is an initial multipartite-entangled state, we considered a GHZ state of the
N qubits: |ψGHZ〉 = (|0〉⊗N + |1〉⊗N)/

√
2. It is well known that in the noiseless case (κ = 0), the

corresponding QFI is Heisenberg limited, QHL = N2t2. When independent noise acts on the qubits,
Heisenberg scaling is in general not possible [15–17]; however an intermediate scaling can be obtained
for transverse noise, by optimizing over the observation time [18].

We considered the continuous monitoring of all the N environments responsible for the noisy
evolution of the system. Differently from the previous case, the point of the the metrological scheme is
now to optimally exploit the initial entanglement, counteracting the effect of the noise by measuring
the environment.

For parallel noise we have proved analytically that for perfect efficiency η = 1 we can restore
the QFI of the noiseless case, i.e., Q̃unr,η=1 = QL = QHL, both with PD [7] and HD [19]. However,
when the efficiency is not perfect the eQFI reduces to the QFI of the unconditional state with a
rescaled noise coupling κ(1− η), thus losing Heisenberg scaling. Furthermore, for parallel noise
some of the assumptions on the monitoring of the N independent channels can be relaxed; due to the
permutational symmetry of the initial state the same result is obtained by using only a single detector
for all the channels.

For transverse noise we have shown analytically that the uQFI shows a quadratic scaling in
N, but it is always smaller than the QFI of the noiseless case. The effect of the noise cannot be
completely restored by continuous monitoring, due to the non-commutativity with the encoding
Hamiltonian. Again for for perfect efficiency η = 1 the scheme is optimal (for both HD and PD) and
the eQFI saturates the uQFI; overall we have Q̃unr,η=1 = QL < QHL. For non-unit efficiency we see a
monotonic increase of the the eQFI with η, but the problem has to be studied numerically (with the
novel algorithm we developed) and we have no conclusive statements about the scaling in N.
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