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Abstract: The non-local manipulation of spin-entangled states by means of local gating in two
parallel 2D topological insulators properly connected to two superconducting electrodes is studied.
We calculate analytically the current-phase relationship of the Josephson current making use of the
scattering matrix approach and we identify the various local and non-local scattering mechanisms.
We show that the Josephson critical current, remarkably, allows a direct quantification of the
entanglement manipulation.

Keywords: electronic transport in mesoscopic systems; entanglement production and manipulation;
andreev reflection; hybrid topological Josephson junctions

1. The Setup

In a Josephson system with ideal interfaces and rigid boundary conditions, the phase difference
φ = φR − φL induces a stationary Josephson current. Microscopically it originates from Andreev
reflection processes that describe the transfer of Cooper pairs (CPs) at the interfaces between the
superconductors and the weak link. In a single 2D TI-plane sandwiched between two conventional
s-wave superconductors, CPs can only be injected or absorbed locally on a specific edge. In order
to have crossed Andreev reflections (CARs) among different edges one needs to consider two edge
states with the same helicity. Specifically in Ref. [1] we focused on the architecture depicted in Figure 1
where a Josephson junction is obtained by sandwiching two planes of 2D TIs in between two s-wave
superconductors. This system allows for CAR processes if the distance W between the two TI-planes is
comparable with the coherence length ξ. Moreover, the properties of the edge modes can be tuned
through the application of “local fields”: on the lower TI, we consider the application of a time-reversal
Rashba-like spin-orbit (SO) field realized by placing a constant gate affecting the dynamical phase of
the carriers along the edge [2]; while, on the upper TI plane, we assumed a local Zeeman-like (B) field
which is time-reversal breaking and can be realized exploiting the Doppler shift effect induced by a
magnetic flux through the junction (see Figure 1) [3,4].
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Figure 1. Schematic representation of the setup: it consists of an heterostructure (say CdTe-HgTe)
grown along the z-axis resulting in two layers of TIs. In gray are depicted the superconductors (SL/R)
while in green the TI planes. The arrowed blue (red) solid lines represent the 1D helical edge states with
spin ↑ (↓). On the frontal side, in the x-z-plane of the scheme, are depicted two CAR processes where
CP are non-locally splitted. The application of the Rashba and Zeeman-like fields due to the presence of
side gates and the induced magnetic flux Φ. Such a fields act in terms of the unitary operators Uu

B (θB)

and U `
SO(θSO) (see text) on the upper and lower edges respectively.

2. The Model

Following the scattering approach [5–7], we describe the setup of Figure 1 by means of its
scattering matrix, which relates the incoming electron or hole amplitudes impinging onto the interfaces
with the superconductors with the outgoing electron or hole amplitudes [8,9]. The scattering matrix of
the Andreev processes occurring on the left L (right R) TI-S interface, in the u-l space, can be written as[
1|ΛL(R)|+ iσx|XL(R)|

]
eiφL(R) , with σx the Pauli matrix and ΛL(R) and XL(R) representing respectively

the amplitude for the LAR and CAR events (these terms being related by the unitarity conditions
|ΛL(R)|2 + |XL(R)|2 = 1). In writing the above expression we neglected the presence of the edge modes
running in the backside part of the device of Figure 1. This is justified by assuming that the size of
the TI in the y-direction is much larger than the coherence length `φ or having intentionally broken
superconducting coherence introducing a dephasing source along those edges, e.g. by adding a floating
metal pad over those edge modes which will induce electron decoherence. So backside modes decrease
the supercurrent introducing an effective loss parameter η ∈ [0, 1] where η = 0 represents lossless
regime. The action of the two local fields along the edge length L is described, in the spin space, by the
following unitary operators: Uu

B (θB) = exp [iθBσz/2] and U `
SO(θSO) = exp [i sign(px)θSOσz/2], where

the z-axis is the quantization axis of both the TI planes and px is the momentum of electrons moving in
the x-direction. The manipulation angles θB = 4πBWL/Φ0 ≡ 4πΦ/Φ0 and θSO = 2eV0L/h̄vF can be
obtained by exploiting the Doppler shift effect and a constant gate respectively (see Figure 1).

3. Local Fields Selective Action

The local action of the fields UB(θB) and USO(θSO) operates independently and selectively
on the local and non-local components of the Josephson current. Before solving explicitly the
transport equations of the model, a preliminary evidence of this fact is obtained via an heuristic
argument applied to the simplified scenario where LARs are absent (i.e., ΛL(R) = 0). Under this
circumstance the non-local emission of a CP from a superconducting electrode, say SL, results in
the formation of a spin-entangled CP state, which arises from two superimposed CAR processes.
In the first one, a spin-↓ hole propagating in the lower edge gets reflected into an spin-↑ electron
in the upper edge, while in the second one, a spin-↓ hole propagating in the upper edge gets
reflected into an spin-↑ electron in the lower edge [see Figure 1]. Such spin-entangled state could
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be represented as |C〉 =
(∣∣∣e↑uh↓`

〉
−
∣∣∣h↓ue↑`

〉)
/
√

2, where the minus sign recall the fact that the CP
is in a spin-singlet state of s-wave Ss. The action of the local fields on |C〉 results in the state:

ei θB
2

(
e−iθSO/2

∣∣∣e↑uh↓`
〉
− e+iθSO/2

∣∣∣h↓ue↑`
〉)

/
√

2. This expression shows that while the B-field introduces
only a global phase, that can be reabsorbed with a gauge transformation, the SO-field modifies the
entanglement symmetry of the non-local CP state |C〉 by introducing a relative phase factor exp(iθSO),
without altering its entanglement content. In particular, if θSO = π the non-local spin-singlet CP
changes into a spin-triplet one, thus giving rise to a mismatch with respect to the intrinsic CPs singlet
symmetry of the electrodes, thus hindering the Josephson coupling. In view of this fact, in the
absence of LAR processes, one hence expects the Josephson current to be proportional to the quantity
C = | 〈C| USO(θSO) |C〉 | = | cos(θSO/2)|, which measures the degree of change of the symmetry of the
entangled CP.

4. Results

To set the above observations on firm ground, in Ref. [1] we computed the critical current
Jc of the system, i.e., the maximum Jc = maxφ {|J(φ)|} of the Josephson current J(φ). Using the
scattering formalism [8–10] in the short junction limit, i.e., when L� ξ, the latter can be expressed as
J(φ) = − 2e

h̄ ∑p tanh
(
εp/2kBT

) dεp
dφ , where εp are Andreev bound state energies obtained solving the

self-consistent secular problem [10]. Remarkably, we find that for the proposed setup Jc can be written
in the following compact form

Jc = α(η, T) |Γ|+ β(η, T), (1)

where Γ = cos (θSO/2)|XL||XR| + cos (θB/2)|ΛL||ΛR| depends only on the Andreev reflection
amplitudes XL and XR, and on the local fields strengths θB and θSO, while the prefactor α and the
off-set β depend only on the temperature T and on the losses η.

By close inspection of Equation (1) one obseves that the critical current in a pure LAR scenario
results as a constant function of the manipulation angle θSO. Any deviation from this behaviour is an
unequivocal signature of the presence of CAR processes at both the interfaces with the superconductors.
Furthermore it is worth noting that one can always nullify the contributions to the current of the LAR
processes by properly tuning the external Zeeman-like field to have θB = π: in this way one can single
out the component of the current arising from the purely CAR processes.

Hereafter we claim that the dependence on θSO of Jc such as determined in Equation (1) indicates
that the critical current reflects the entanglement symmetry manipulation due to the action of the
SO field. We first notice that the critical current, resulting from Andreev bound states within the
junction, can be seen as consisting of the sum of contributions arising from multiple Andreev reflection
processes. In the only-CAR regime one can identify, for any values of η, two classes of processes:
the ones corresponding to Cooper pairs which traverse the junction back and forth an even number
of times and the processes which traverse the junction an odd number of times. For the even class,
the singlet symmetry is not modified by the effect of the SO-field, since the backward time-reversed
propagation cancels the SO-field-induced phase taken during the forward propagation. The spin
entanglement symmetry is instead changed only for the odd class processes. This suggests that, at zero
temperature and without losses (η = 0), the odd class processes contribute to the critical current with
the term C = | 〈C| USO(θSO) |C〉 | = | cos(θSO/2)| in units of J0 = 4∆0

e
h̄ . At the same time the even

class is independent of θSO and contributes to the current with the constant value J0 (this give rise to
the off-set β in Equation (1)). Indeed, the critical current can be written as Jc = J0(1 + C). In particular,
at θSO = π the entanglement symmetry of the non-local electronic state is changed into triplet in half of
the processes (the odd ones) and is left singlet in the other half (the even ones). As a result, the non-local
electronic state is an equal weighted mixture of singlet and triplet states. This interpretation is actually
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corroborated by the fact that when only lowest order processes contribute, i.e., in the single-shot regime
occurring when η ' 1, the critical current in the leading term of (1− η), takes the following form

Jc =
e∆0

h̄
|cos (θSO/2)|(1− η)4 +O((1− η)6) (2)

The lowest order (1− η)4 accounts for the single shot CP process, where the CP is splitted at one
barrier, taking an (1− η)2 factor, and another factor when it recombines on the other barrier. In this case
one finds a complete blocking of the critical current in correspondence to θSO = π. Previous results
show that in the limit of single shot regime the action of the local SO field on the single CP returns
exactly the expected entanglement manipulation signature C. Furthermore Equation (1) clarifies that
standard critical currents allows one to access experimentally the product |XR||XL| which determines
the relative weight between the LAR and CAR processes.

5. Conclusions

In this paper we have review the setup proposed in Ref. [1] which makes use of helical edge
states of a TI to spatially separate the two electrons composing a CP of a superconductor, thus enabling
to manipulate the symmetry of a maximally entangled state. In particular we have shown that a
measurable signature of this effect is provided by the critical current of the model.
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