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Abstract: It is unrealistic to control all of the degrees of freedom of a high-dimensional quantum
system. Here, we consider a scenario where our direct access is restricted to a small subsystem S that is
constantly interacting with the rest of the system E. What we investigate is the fundamental structures
of the Hilbert space and the algebra of hamiltonians that are caused solely by the restrictedness of the
direct control. One key finding is that hamiltonians form a Jordan algebra, and this leads to a significant
observation that there is a sharp distinction between the cases of dimHS ≥ 3 and dimHS = 2 in terms
of the nature of possible operations in E. Since our analysis is totally free from specific properties of
any physical systems, it would form a solid basis for obtaining deeper insights into quantum control
related issues, such as controllability and observability.
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1. Introduction

Understanding the dynamics of many-body quantum systems under artificial control is by no
means easy. As the race towards the realisation of quantum computer is growing its momentum,
a solid theoretical foundation is desired more than ever in order to tame complex quantum dynamics
systematically. The principal difficulty is in the necessity of controlling exponentially many degrees of
freedom of a large quantum system through a limited number of technically controllable parameters.

Under the common condition of limitations on our artificial control, a natural question would be
what we can do on a given physical system, and how it can be done [1–3]. Although it is still somewhat
hard to develop methodology of quantum control in a general setting, some useful mathematical
results have already been obtained to understand the controllability of a system.

The most noteworthy tool is the dynamical Lie algebra (DLA), which is a set of all realisable
operators under the given condition [4–6]. It can be calculated as the maximum set of independent
operators that are generated by the (drift) hamiltonian h0 and hamiltonians {hk} corresponding to
modulable field parameters. In order to make the setting realistic and mathematically tractable, we
assume {hk} form a Lie algebra su(dimHS) acting on HS, where HS is the Hilbert space for a small
subsystem S of dimension dimHS (Figure 1a). The effects of control on S propagate into the rest of the
system, E, which interacts with S through h0.

Now some questions arise, concerning the DLA under restricted access. What sort of intrinsic
constraints are imposed on the algebraic structure of DLA by the restriction on our access? What
does the structure of the Hilbert space look like? Does appending an ancillary systemHA toHS help
enlarge the controllable space inHE?
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Investigating spatial structures will also have direct and important consequences with respect to
the system identifiability. There have been intensive research activities on the problem of quantum
system identification under limited access [7–12], and it is becoming clearer that there exist some
intrinsic mathematical structures that put limitations on what we can observe through S.

Figure 1. (a) A schematic view of the problem setting. A small subsystem S can be directly accessible,
while the rest of the system E is beyond direct control; (b) A one-dimensional spin chain considered for
control in [2]. The two spins at the chain end are in the directly accessible subsystem, and the rest of
the chain, E, only evolves through hXX

0 .

Here, we classify the algebraic structure of the DLA, induced by the restrictedness of access.
In addition, we find that there is a clear distinction between the case of dimHS ≥ 3 and that of
dimHS = 2. While there appear only direct sums of su(·) when dimHS ≥ 3, the structure of formally
real Jordan algebra is embedded in the DLA if dimHS = 2. Further, looking into the transition between
these two cases, we can answer the question about the effect of ancilla: appending an ancilla does
enhance the controllability of quantum state of E if dimHS = 2, although it does not otherwise.

Jordan algebras were first introduced by Jordan et al. more than 80 years ago. Roughly speaking,
it is a nonassociative algebra whose multiplication is defined by anticommutator. It has not attracted
much attention in quantum mechanics for a long time, however, recently there are some interesting
works that discuss Jordan algebraic aspects in topics of quantum spin dynamics (See, e.g., [13,14]).

2. Main Results

The physical setup we consider is as follows. A quantum systemHS, on which arbitrary control
can be applied at will, is interacting with an external system HE coherently. The dynamics of HE,
including the interaction withHS, is described by the drift Hamiltonian h0, andHE is not subject to
our direct control. That is, we can access HE only indirectly through HS. Also, we assume that the
Hilbert spacesHE andHS are both finite dimensional.

In the analysis of the controllability of a quantum system, crucially important is the dynamical Lie
algebra L. It is a Lie algebra generated by ih0 and a set {IdE} ⊗ su(dimHS) of operators. Here, IdE is
the identity operator onHE, {IdE} is a one-dimensional space generated by IdE, and su(dimHS) is a
set of all traceless skew-hermitian operators acting onHS, thus representing a set of arbitrary controls.
A direct product of the operator sets S1 ⊗S2 is a set of s1 ⊗ s2 for all sb ∈ Sb (b = {1, 2}), and iS is the
set of elements i · s for all s ∈ S .

Before presenting our main results, let us define two terms. One is the connected algebra Lc, which
is the smallest ideal of L that includes {IdE} ⊗ su(dimHS), and the other is the disconnected algebra Ld;
it is a set of all skew-hermitian operators which commute with any element in Lc. Formally,

Lc := L({[· · · [[g′, g1], g2], · · · , gn]|n ∈ Z≥1 ∧ gm ∈ L ∧ g′ ∈ {IdE} ⊗ su(dimHS)}), (1)

Ld := {g|g ∈ u(dimHE · dimHS) ∧ ∀g′ ∈ Lc, [g, g′] = 0}, (2)

where L(S) indicates a set of all real linear combinations of the elements in S , and u(dimHE · dimHS)

is a set of all skew-hermitian operators onHE ⊗HS. From the Jacobi relation, Ld is also a Lie algebra.
We list here the rough and intuitive messages of the five main theorems on the structure of the

DLA induced by the restrictedness of direct access. The precise statement can be found in [15].
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Theorem 1. Any element in the dynamical Lie algebra L is a sum of two elements, one of which is controllable
from operations on S and the other is uncontrollable. These two are the elements of subalgebras Lc and Ld,
respectively.

Theorem 2. When dimHS ≥ 3, the Hilbert spaceHE can have a direct sum structure:

HE =
⊕

j
HEj =

⊕
j
HBj ⊗HRj . (3)

In accordance with the Decomposition (3), Ld and Lc are written as direct sums of subalgebras as

Ld =
⊕

j
u(dimHBj)⊗ {IdRj ⊗ IdS}, and Lc =

⊕
j
{IdBj} ⊗ su(dimHRj · dimHS). (4)

The dynamics onHR is driven by Lc, and that onHB is by Ld. Thus,HB cannot be controlled through operations
onHS. In other words, the limitedness of direct access to S induces a natural basis structure to E.

Theorem 2 conveys a somewhat strong message. It claims that, when dimHS ≥ 3, even if we
attach an additional quantum system S′ to S, intending to enlarge the effective work space, it does not
expand the set of executable operations forHE.

Theorem 3. When dimHS = 2, HE has a direct sum structure, which is similar to the case of dimHS ≥ 3,
while the connected dynamical Lie algebra Lc may not span su, i.e., the full controllability is not guaranteed.

One common message from Theorems 2 and 3 is that, regardless of the dimension of the system
S, the system E would have a direct sum structure as in Equation (3). Thus the quantum dynamics
cannot make a state jump between different subspaces in the sum.

The proofs of Theorems 1–3 are somewhat intricate, thus let us delineate the basic idea only
briefly here. Let G(1) be a set of operators onHE that form interaction operators with the S system in L.
Namely, any operator g1 in G(1) is in L in the form g1 ⊗ σS with σS ∈ i · su(dimHS). Another one, G(0),
is defined to be a set of those operators g0 that form g0 ⊗ IdS (G(0) and G(1) are not exclusive). Then,
i{G(1), G(1)} ⊆ G(1) holds regardless of dimHS, which means that G(1) forms a Jordan algebra [16].
A (formally real) Jordan algebra J is known to be written as a direct sum of simple Jordan algebras Jj,
and this is why ourHE should have a direct sum structure as well. The distinction between the cases
of dimHS ≥ 3 and = 2 comes from another algebraic structure, that is, [G(1), G(1)] ⊆ G(1) holds when
dimHS ≥ 3, but it does not if dimHS = 2.

Theorem 4. The algebraic structures shown in Theorems 2 and 3 are sufficient conditions for L to be a Lie
algebra that contains su(dimHS).

Theorem 5. This theorem shows how the space structure changes when an additional dimension(s) is appended
to a 2-dimHS, thus describes how controllability is acquired in the transition from dimHS = 2 to 3.

The expansion of controllable space can be seen in the existing study of quantum controllability
of specific physical systems. For example, in [2], the indirect control was discussed for a chain of N
spin-1/2 particles whose dynamics is governed by the drift hamiltonian

ihXX
0 =

i
2

N

∑
k=1

ck[(1 + γ)XkXk+1 + (1− γ)YkYk+1] + bkZk, (5)

where the last term represents the Zeeman interaction and γ is the anisotropy parameter.
The paper [2] presented a specific and efficient scheme to control the entire chain through S

containing two end spins under the dynamics by ihXX
0 (See Figure 1b). The inclusion of two spins
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in S is necessary, since directly controlling only one spin at the chain end does not lead to the full
controllability over the entire chain. Our results give a clear explanation on the structural difference
between these two cases, and what happens when an extra spin, the 0th spin in Figure 1b, is appended.

3. Conclusions

We have clarified the structures of the Hilbert space and the Lie algebra that are induced when
active controls are possible only in a small subspace of a quantum system. The present analysis can
be applied to the study of physical situations where we wish to control a large quantum system with
minimal access. Such scenarios have been discussed under the motivation to suppress unnecessary
interactions between the quantum system and its environment.

The presented results can be useful to further investigate the possibility of indirect control of
large systems. In this context, one significant consequence of indirect control is the existence of
equivalence classes, within which any distinct physical configurations of E and its hamiltonians cannot
be distinguished by any operations on S. While it has already been studied in the literature, such
as [12,17], our results would shed more lights on this issue in a consistent way.
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