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Abstract: We address the problem of efficiently and effectively compress density operators (DOs),
by providing an efficient procedure for learning the most likely DO, given a chosen set of partial
information. We explore, in the context of quantum information theory, the generalisation of the
maximum entropy estimator for DOs, when the direct dependencies between the subsystems are
provided. As a preliminary analysis, we restrict the problem to tripartite systems when two marginals
are known. When the marginals are compatible with the existence of a quantum Markov chain (QMC)
we show that there exists a recovery procedure for the maximum entropy estimator, and moreover,
that for these states many well-known classical results follow. Furthermore, we notice that, contrary
to the classical case, two marginals, compatible with some tripartite state, might not be compatible
with a QMC. Finally, we provide a new characterisation of quantum conditional independence in light
of maximum entropy updating. At this level, all the Hilbert spaces are considered finite dimensional.

Keywords: maximum entropy density operators; quantum conditional independence; density
operators recovery

1. Introduction

Quantum tomography allows to reconstruct a unique quantum state by performing a complete
set of measurements on multiple copies of a quantum system. The amount of necessary resources to
perform the reconstruction increases exponentially with the dimension of the system, and so, machine
learning techniques provide more efficient procedures to infer the most likely quantum state from
a chosen set of partial information.

When dealing with partial information, it is reasonable to choose a maximally non-committal
estimator, with regard to the missing information, that coincides with the maximum (Shannon)
entropy probability distribution (PD), as addressed by Jaynes [1] in the classical scenario. Since DOs
generalise PDs, we analyse density operators that, spanning on the whole Hilbert space, maximise
the von Neumann entropy. Concretely, we focus on the case of DOs for which the bipartite marginals
are known.

By limiting our knowledge to the “first neighbour” interactions, we expect to obtain an exponential
speedup concerning inference of the optimal DO. This is a well-known result for the analogous
classical problem using PDs (see, for instance, [2,3]): given a set of random variables, ranged on finite
domains, for which the given direct dependencies are tree-structured, Bayesian networks provide an
optimal efficient learning procedure of the joint distribution. It turns out that the inferred joint always
maximises the Shannon entropy from the provided bipartite marginals. Moreover, via the Chow-Liu
learning algorithm [4], the closest tree to any graphical structure can be determined. The full joint PD is

Proceedings 2019, 12, 39; doi:10.3390/proceedings2019012039 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0002-2393-8224
http://dx.doi.org/10.3390/proceedings2019012039
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/2504-3900/12/1/39?type=check_update&version=2


Proceedings 2019, 12, 39 2 of 5

factorizable via Bayes rule [3], and thanks to the Markov condition [3], the factors depend merely on
bipartite correlations.

Therefore, given a multipartite quantum system, the problem of inferring the DO that maximises
the von Neumann entropy from its set of bipartite marginals is expected to be efficiently solvable,
at least when it coincides with a purely classical tree. However, the following open question arises:
is there a larger subset of DOs for which this result also holds? It is reasonable to begin our analysis
with quantum trees, in particular, with the easiest non-trivial one—a tripartite system. Concretely, we
consider a quantum system { A, B, C } for which two of its bipartite marginals are known, say ρAB and
ρBC, and we ask whether there exists an efficient procedure for inferring, among all that have the same
marginals, the tripartite quantum state that maximises the von Neumann entropy.

For our analysis, it is quite relevant to consider the results about quantum Markovianity,
in particular, the definition of quantum Markov chain via CPTP maps composition stated in [5] and its
entropic characterisation, known as quantum conditional independence [6,7]. We also benefitted from
the results in [5,8,9] about recovery maps, that are summarised in [10], namely the operatorial versions
of the strong subadditivity in [11,12] and the results about quantum Markov chains by Petz [7,13].

Interestingly, we find out that, differently from the classical scenario, the resolvability of the
problem strictly depends on the nature of the given marginals. Indeed, we provide a necessary and
sufficient condition to determine whether the pair of provided marginals allows for a concrete algebraic
solution of the von Neumann entropy maximisation problem, and for that case, we explicitly give the
analytic expression of the recovered tripartite density operator. Finally, we stress that by studying the
conditional independence at the light of von Neumann entropy maximisation allowed to introduce
a novel characterisation of quantum Markov chains.

2. Results

We start by stating the simplest recovery problem for tripartite systems, for that, we need to
introduce the concept of compatibility for quantum states. We say that a set of marginal quantum
states ρAB, ρBC are compatible if there exists a tripartite state ρABC such that TrA(ρABC) = ρBC and
TrC(ρABC) = ρBC.

Problem 1 (Maximum Entropy Estimator). Given two compatible bipartite marginal quantum states ρAB ∈
L (HAB) , ρBC ∈ L (HBC) finding the correspondent tripartite quantum state ρABC ∈ L (HABC) with highest
von-Neumann entropy.

The solution for the above problem is given by

ρ̃ABC =
1

ZABC
exp

(
∑
ij

λij Λ(A)
i Λ(B)

j IC + ∑
ij

ηij IA Λ(B)
i Λ(C)

j

)
(1)

where ZABC is a constant that enforces trace one on ρ̃ABC; λij and ηij are Lagrange multipliers which
are constrained by the given partial traces; {Λ(X)

i : i = 0 . . . n2 − 1} is a family of traceless, Hermitian
matrices (plus the identity) that generate the Lie Algebra ofHX for X = A, B, C.

Given that this problem is overwhelming in general, we focus our attention on a well-behaved
class of tripartite states. We recall that a tripartite state ρABC on A⊗ B⊗ C is said to be a (quantum)
Markov chain in order A↔ B↔ C if there exists a recovery mapRB→BC such that

ρABC = IA ⊗RB→BC(ρAB), (2)

where a recovery map is an arbitrary trace-preserving completely positive map. Interestingly, there is
an information-theoretic characterization for QMC based on conditional von Neumann entropy, which
can be found, for instance, in [6]. Concretely, a tripartite state is a QMC iff Iρ (A : C|B) = 0, i.e., if the
strong sub-additivity of von Neumann entropy [14] holds with equality.
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Our first result states that there exists an algebraic solution to Equation (1) when the provided
marginals are compatible with a quantum Markov chain.

Theorem 1. Given bipartite marginals quantum states ρAB ∈ L (HAB) , ρBC ∈ L (HBC) compatible with a
QMC state, say ρABC, then the solution to the maximum entropy estimator is ρ̃ABC = ρABC, and moreover
ρ̃ABC can be algebraically recovered via the Petz map, concretely:

ρ̃ABC = ρ
1
2
BC ρ

− 1
2

B ρAB ρ
− 1

2
B ρ

1
2
BC = ρ

1
2
AB ρ

− 1
2

B ρBC ρ
− 1

2
B ρ

1
2
AB . (3)

Next, we provide conditions for two bipartite marginal quantum states ρAB ∈ L (HAB) , ρBC ∈
L (HBC) to be compatible with a QMC state .

Theorem 2. Two bipartite marginals quantum states ρAB and ρBC are compatible with a QMC, say ρABC, iff

the operators $ABC = ρ
1
2
BC ρ

− 1
2

B ρAB ρ
− 1

2
B ρ

1
2
BC and σABC = ρ

1
2
AB ρ

− 1
2

B ρBC ρ
− 1

2
B ρ

1
2
AB coincide $ABC = σABC.

The Maximum Entropy Principle, in the form of Principle of Minimum Updating, is at the basis of
the inferential updating of DOs [15]. This approach provides yet another perspective of Problem 1.
Given a quantum system {X1, . . . , Xn } on the separable Hilbert space

⊗
iHXi , let $ be our prior

knowledge about the system. Assume that now we have access to a new set of information about the
system provided as a family 〈Θi〉 of expected values of the Hermitian operators {Θi }. Then, the most
unbiased posterior DO ρ corresponds to the one that minimises the relative entropy distance with the
prior DO under the given constraints:

ρ = exp

(
λI+ ∑

i
αiΘi + ln $

)
, (4)

where the Lagrange multipliers { λ, αi } are determined by the constraints Tr[ρ] = 1 and Tr[ρ Θi] = 〈Θi〉.
The process $

〈Θi〉−−→ ρ is addressed as quantum Bayesian updating [15]. Problem 1 can be restated as
the following 2-step quantum Bayesian updating process:

I
dABC

ρAB−−→ ρ̃′ABC
ρBC−−→ ρ̃ABC (5)

where ρ̃′ABC = ρAB ⊗
1

dC
IC and ρ̃ABC = exp

(
∑
ij

ηijΛ
(B)
i Λ(C)

j + log ρ̃′ABC

)
. (6)

The Lagrange multipliers { ηij } are determined by the constraints TrA [ρABC] = ρBC and
Tr [ρABC] = 1. We observe that the solution of the 2-step Bayesian updating process does not necessary
coincides with Equation (1), unless the two marginals are compatible with a tripartite QMC. In other
words, Equation (5) strictly depends on the order of the data, while Equation (1) does not. A new
characterisation of QMC at the light of quantum Bayesian updating is given in the following result.

Theorem 3. Given a couple of marginals ρAB and ρBC, they are compatible with a tripartite QMC ρ̃ABC iff the
following diagram commutes

I
dABC

ρ̃′ABC

$̃′ABC ρ̃ABC.

ρAB

ρBC ρBC

ρAB
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A trivial corollary of the above theorem is that the 2-step quantum Bayesian updating process
coincides with Equation (1) iff the provided marginals are compatible with a QMC.

3. Discussion

Addressing the problem of inferring the tripartite DO that maximises the von Neumann entropy
given two bipartite marginals, we find out that the classical results of algebraic recoverability can be
extended to the set of DO addressed as quantum Markov chain.

We have shown that QMCs hold very interesting properties, namely they coincide with the
quantum states for which a 2-step Bayesian update is commutative. Moreover, for QMC, we expect
many classical learning/inference techniques to be easily adapted, including the efficient learning
procedures for trees which is a particular case of the Quantum Hammersley–Clifford theorem
by Poulin and Petz. For non QMC, we can still apply algebraic geometry algorithms, based on
Tarski–Seidenberg theorem, to extract the optimal DO that maximises the Tsallis entropy (which
approximates asymptotically the von Neumann entropy), but such methods are very inefficient.

A detailed, geometrical if possible, characterisation of the quantum states (1) is under exam, in
particular to determine if a general tripartite maximum entropy DO is in some meaningful way close
to a quantum Markov chain, in order to obtain an approximate algebraic recovery. The multipartite
case, namely quantum Trees, is also under analysis.
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