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Abstract: The ultrastrong coupling regime of light-matter interaction is achieved when the coupling
strength is a significant fraction of the natural frequencies of the noninteracting parts. Physics
in this regime has recently attracted great interest, both theoretically and experimentally being a
fruitful platform to test fundamental quantum mechanics in a new non-perturbative regime, and for
applications to quantum technologies.Here we discuss the generation of photon-pair states, which is
a distinctive feature of this new regime, and interesting new dynamicsl effects both in optomechanics
and in circuit-QED architectures.
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1. Introduction

Light-matter interaction is a fundamental building block of Nature leading to countless
applications, including the forefront demonstration of supremacy of quantum technologies [1,2].
Circuit-QED solid-state systems are one of the forefront platforms for quantum hardware [3]
implementing paradigmatic models where fundamental physics from measurement theory [4] to
quantum thermodynamics [5] and quantum communication [6] can be studied. In the last few years
a new ultrastrong coupling (USC) regime, where light-matter coupling is large enough to break the
rotating wave approximation (RWA), has been achieved in cavity and circuit QED, THz metamaterials,
intersubband polaritons and other physical systems [7,8], and has been subject of extensive theoretical
analysis [7–14] showing thatnovel and outstanding physics arises in this non-perturbative regime.
In very recent work it has been shown that USC can be a powerful tool for the generation of photon pairs
from entangled states in optomechanical systems [15] and circuit-QED architectures [16]. New results
on the dynamics of photons are here reported.

2. Casimir Radiation from Optomechanical Systems

Dynamical Casimir effect (DCE) consists in generation of photons from the quantum vacuum
due to rapid changes of the boundary conditions. Creation of photons triggered by moving mirrors,
was first predicted in 1970 [17], and later it was shown that photons can be generated also by a single
mirror [18]. Tho different strategies have been considered for the experimental demonstration of
DCE, namely: (1) in a device with a movable mirror able to oscillate very fast [19], or (2) inducing
modulated boundary conditions mimicking an effective motion [20,21]. According to the theoretical
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description [22] the experimental detection of the DCE is still challenging due to the fabrication of very
fast movable mirrors. Indeed for the DCE to be observed the mechanical oscillation frequency ωm

has to be at least twice the frequency of the lowest cavity mode, ωc. Nowadays, such a condition still
represents the biggest issue for the demontration of the mechanical DCE. This is why a lot of interest
was driven to the implementation of the analog of DCE by time dependent boundary conditions. In the
last decade [21] this strategy was implemented by superconducting circuits coupled to a coplanar
transmission line terminated with a SQUID, whose inductance modulated at high frequency results
in a time dependent reflectivity. Recently, a very interesting way to overcome the experimental
observation of a true mechanical DCE was proposed by Macrí et al. [15]. In this work a careful
theoretical description of the optomechanical interaction was studied, showing that the required
matching condition 2ωc = ωm can be softened. Indeed the full Hamiltonian, for a single light mode
interacting with a mechanical moveable mirror is:

Hsys = ωca†a + ωmb†b +
G
2
(a + a†)2(b + b†) (1)

where a(a†) and b(b†), represent respectively the annihilation (creation) operators of cavity mode
and mechanical oscillator, G being the coupling strength. Notice that by writing in normal order
the interaction term we can identify the standard optomechanical coupling term describing the
energy induced by the radiation pressure, Hom = Ga†a(b + b†), and the additional term HDCE =
G
2
(a2 + a†2)(b + b†). This latter is routinely neglected owing to its perturbative action, since the

mechanical frequency is usually considered much smaller than the optical frequency (as it happens
in the standard experimental conditions) and because of the weak coupling regime, i.e., G is small
compared to the bare energies. However this is not true in the non-perturbative USC regime where
HDCE cannot be neglected anymore.

Eigenvalues of Hsys as a function of ωc for fixed G and ωm are reported in Figure 1b, showing
the appearance of a peculiar avoided level crossing between states with 2 photons and 4 phonos,
and between 2 photons and 3 phonons (magnified in Figure 1c,d). In general HDCE is able to induce
resonant optomechanical scattering processes involving |n, kn〉 ↔ |n + 2, (k − q)n+2〉, where n (k)
labels the photon (phonon) state, the subscript indicates which mechanical manifold is considered, and
q is an integer number. Such avoided crossings occur when the energies of the final and initial states
coincide, i.e., 2ωc ∼ qωm, marking the coherent exchange of excitations between light and mechanical
oscillator. This result shows that the main difficulty for the detection of mechanical DCE, namely very
large mechanical frequency are not necessary, is overcome since ωm can be also smaller than ωc even
for q = 3. Of course for larger q the induced level splitting decreases, and the dynamical detection may
become fragile with respect to the decoherence and losses, but for q = 4, the splitting is still larger than
the losses rate achievable with the best state-of-art optomechanical systems. The reversible dynamics
subsumed by HDCE, can be tested either by preparing the system in one of the mechanical Fock
state and let it evolve, or by an external coherent drive (pulsed or continuous) exciting the oscillator
and detecting the photon-conversion of the excitation. In both cases measurement of the generated
Casimir photons requires that the optomechanical system is viewed as an open quantum system,
whose dynamics is described by a Master Equation accounting for the generalized photodetection
scheme appropriate for USC [15].

In Figure 2 the dynamics of an interacting optomechanical systems prepared in the two-photons
Fock state of the mechanical oscillator |0, 2〉, exchanging coherently excitations with the electromagnetic
mode |2, 0〉. Figure 2b shows the strong coupling regime, when the assocated level splitting Ω2,0

0,2 is
much larger than the losses, where an almost complete energy conversion occurs. In Figure 2a larger
losses are considered, showing that a non-negligible photon rate is still measurable out of the cavity.

During the last year, such a new theoretical proposal for mechanical DCE has driven particular
attention. In particular, in Ref. [23] the authors showed how to exploit a generalized version of DCE,
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in an interacting tripartite system consisting of two mechanical mirrors coupled to the same optical
mode, where an excitation of a mirror can be transferred to the other involving virtual photon processes.

The continuous blue lines correspond to the energy
levels obtained by numerically diagonalizing the system
Hamiltonian Ĥs in Eq. (3). The main difference compared
to the gray lines is the appearance of level anticrossings
of increasing size at increasing eigenenergy values
when E0;k ¼ E2;k−1 (corresponding to a cavity frequency
ωc ¼ ωm/2þ 2g2/ωm ≃ ωm/2). We observe that the con-
dition ωc ≃ ωm/2 is the standard resonance condition
(ωm ¼ 2Nωc) for the DCE in a cavity with a vibrating
mirror [14], with N ¼ 1. These avoided crossings arise
from the coherent coupling induced by V̂DCE between the
states j0; ki ↔ j2; ðk − 1Þ2i with k ≥ 1. If the optomechan-
ical coupling is not too strong, the size of the anticrossings
can be analytically calculated by using first-order pertur-
bation theory. By approximating jk2i ≃ jki, for the energy
splittings, we obtain the simple expression

2ℏΩ2;k−1
0;k ¼ 2h2; ðk − 1Þ2jV̂DCEj0; ki ≃ ℏg

ffiffiffiffiffi
2k

p
;

in very good agreement with the numerical results in
Fig. 2(a). When the splitting is at its minimum
(ωc ¼ ωm/2þ 2g2/ωm), the two system eigenstates are
approximately (not exactly, owing to dressing effects
induced by V̂DCE) the symmetric and antisymmetric super-
position states

jψ2ð3Þi ≃
1ffiffiffi
2

p ðj0; 1i% j2; 02iÞ: ð9Þ

These vacuum Casimir-Rabi splittings, demonstrating
optomechanical-induced hybridization of zero- and two-
photon states, establish a close analogy between the DCE
and cavity QED, where the atom-photon vacuum Rabi
splitting and quantum Rabi oscillations in the time domain
have been observed in many systems and widely exploited
for many applications [70]. We observe, however, that,
while quantum Rabi splittings in cavity QED describe
coherent coupling between states with the same number of
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FIG. 2. Lowest-energy levels of the system Hamiltonian as a function of the ratio between the cavity frequency and the mechanical
frequency. In (a) an optomechanical coupling g/ωm ¼ 0.04 has been used. The dashed gray lines describe the eigenenergies of the standard
optomechanicsHamiltonian Ĥ0 þ V̂om. The blue continuous curves are the eigenvalues of Ĥs ¼ H0 þ V̂om þ V̂DCE,which have also been
calculated for a coupling g/ωm ¼ 0.1, as shown in (b). Panels (c) and (d) display enlarged views of the two boxed regions in (b) showing
avoided-level crossings due to optomechanical hybridizations of zero- and two-photon states (vacuum Casimir-Rabi splittings).
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Hamiltonian Ĥs in Eq. (3). The main difference compared
to the gray lines is the appearance of level anticrossings
of increasing size at increasing eigenenergy values
when E0;k ¼ E2;k−1 (corresponding to a cavity frequency
ωc ¼ ωm/2þ 2g2/ωm ≃ ωm/2). We observe that the con-
dition ωc ≃ ωm/2 is the standard resonance condition
(ωm ¼ 2Nωc) for the DCE in a cavity with a vibrating
mirror [14], with N ¼ 1. These avoided crossings arise
from the coherent coupling induced by V̂DCE between the
states j0; ki ↔ j2; ðk − 1Þ2i with k ≥ 1. If the optomechan-
ical coupling is not too strong, the size of the anticrossings
can be analytically calculated by using first-order pertur-
bation theory. By approximating jk2i ≃ jki, for the energy
splittings, we obtain the simple expression

2ℏΩ2;k−1
0;k ¼ 2h2; ðk − 1Þ2jV̂DCEj0; ki ≃ ℏg

ffiffiffiffiffi
2k

p
;

in very good agreement with the numerical results in
Fig. 2(a). When the splitting is at its minimum
(ωc ¼ ωm/2þ 2g2/ωm), the two system eigenstates are
approximately (not exactly, owing to dressing effects
induced by V̂DCE) the symmetric and antisymmetric super-
position states

jψ2ð3Þi ≃
1ffiffiffi
2

p ðj0; 1i% j2; 02iÞ: ð9Þ

These vacuum Casimir-Rabi splittings, demonstrating
optomechanical-induced hybridization of zero- and two-
photon states, establish a close analogy between the DCE
and cavity QED, where the atom-photon vacuum Rabi
splitting and quantum Rabi oscillations in the time domain
have been observed in many systems and widely exploited
for many applications [70]. We observe, however, that,
while quantum Rabi splittings in cavity QED describe
coherent coupling between states with the same number of

(a) (b)

(c) (d)

FIG. 2. Lowest-energy levels of the system Hamiltonian as a function of the ratio between the cavity frequency and the mechanical
frequency. In (a) an optomechanical coupling g/ωm ¼ 0.04 has been used. The dashed gray lines describe the eigenenergies of the standard
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calculated for a coupling g/ωm ¼ 0.1, as shown in (b). Panels (c) and (d) display enlarged views of the two boxed regions in (b) showing
avoided-level crossings due to optomechanical hybridizations of zero- and two-photon states (vacuum Casimir-Rabi splittings).
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The continuous blue lines correspond to the energy
levels obtained by numerically diagonalizing the system
Hamiltonian Ĥs in Eq. (3). The main difference compared
to the gray lines is the appearance of level anticrossings
of increasing size at increasing eigenenergy values
when E0;k ¼ E2;k−1 (corresponding to a cavity frequency
ωc ¼ ωm/2þ 2g2/ωm ≃ ωm/2). We observe that the con-
dition ωc ≃ ωm/2 is the standard resonance condition
(ωm ¼ 2Nωc) for the DCE in a cavity with a vibrating
mirror [14], with N ¼ 1. These avoided crossings arise
from the coherent coupling induced by V̂DCE between the
states j0; ki ↔ j2; ðk − 1Þ2i with k ≥ 1. If the optomechan-
ical coupling is not too strong, the size of the anticrossings
can be analytically calculated by using first-order pertur-
bation theory. By approximating jk2i ≃ jki, for the energy
splittings, we obtain the simple expression

2ℏΩ2;k−1
0;k ¼ 2h2; ðk − 1Þ2jV̂DCEj0; ki ≃ ℏg

ffiffiffiffiffi
2k

p
;

in very good agreement with the numerical results in
Fig. 2(a). When the splitting is at its minimum
(ωc ¼ ωm/2þ 2g2/ωm), the two system eigenstates are
approximately (not exactly, owing to dressing effects
induced by V̂DCE) the symmetric and antisymmetric super-
position states

jψ2ð3Þi ≃
1ffiffiffi
2

p ðj0; 1i% j2; 02iÞ: ð9Þ

These vacuum Casimir-Rabi splittings, demonstrating
optomechanical-induced hybridization of zero- and two-
photon states, establish a close analogy between the DCE
and cavity QED, where the atom-photon vacuum Rabi
splitting and quantum Rabi oscillations in the time domain
have been observed in many systems and widely exploited
for many applications [70]. We observe, however, that,
while quantum Rabi splittings in cavity QED describe
coherent coupling between states with the same number of
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FIG. 2. Lowest-energy levels of the system Hamiltonian as a function of the ratio between the cavity frequency and the mechanical
frequency. In (a) an optomechanical coupling g/ωm ¼ 0.04 has been used. The dashed gray lines describe the eigenenergies of the standard
optomechanicsHamiltonian Ĥ0 þ V̂om. The blue continuous curves are the eigenvalues of Ĥs ¼ H0 þ V̂om þ V̂DCE,which have also been
calculated for a coupling g/ωm ¼ 0.1, as shown in (b). Panels (c) and (d) display enlarged views of the two boxed regions in (b) showing
avoided-level crossings due to optomechanical hybridizations of zero- and two-photon states (vacuum Casimir-Rabi splittings).
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Hamiltonian Ĥs in Eq. (3). The main difference compared
to the gray lines is the appearance of level anticrossings
of increasing size at increasing eigenenergy values
when E0;k ¼ E2;k−1 (corresponding to a cavity frequency
ωc ¼ ωm/2þ 2g2/ωm ≃ ωm/2). We observe that the con-
dition ωc ≃ ωm/2 is the standard resonance condition
(ωm ¼ 2Nωc) for the DCE in a cavity with a vibrating
mirror [14], with N ¼ 1. These avoided crossings arise
from the coherent coupling induced by V̂DCE between the
states j0; ki ↔ j2; ðk − 1Þ2i with k ≥ 1. If the optomechan-
ical coupling is not too strong, the size of the anticrossings
can be analytically calculated by using first-order pertur-
bation theory. By approximating jk2i ≃ jki, for the energy
splittings, we obtain the simple expression

2ℏΩ2;k−1
0;k ¼ 2h2; ðk − 1Þ2jV̂DCEj0; ki ≃ ℏg

ffiffiffiffiffi
2k

p
;

in very good agreement with the numerical results in
Fig. 2(a). When the splitting is at its minimum
(ωc ¼ ωm/2þ 2g2/ωm), the two system eigenstates are
approximately (not exactly, owing to dressing effects
induced by V̂DCE) the symmetric and antisymmetric super-
position states

jψ2ð3Þi ≃
1ffiffiffi
2

p ðj0; 1i% j2; 02iÞ: ð9Þ

These vacuum Casimir-Rabi splittings, demonstrating
optomechanical-induced hybridization of zero- and two-
photon states, establish a close analogy between the DCE
and cavity QED, where the atom-photon vacuum Rabi
splitting and quantum Rabi oscillations in the time domain
have been observed in many systems and widely exploited
for many applications [70]. We observe, however, that,
while quantum Rabi splittings in cavity QED describe
coherent coupling between states with the same number of

(a) (b)

(c) (d)

FIG. 2. Lowest-energy levels of the system Hamiltonian as a function of the ratio between the cavity frequency and the mechanical
frequency. In (a) an optomechanical coupling g/ωm ¼ 0.04 has been used. The dashed gray lines describe the eigenenergies of the standard
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Figure 1. (a) Schematic picture of optomechanical system: the mechanical motion of the mirror induces
the generation of Casimir photons that are detectable outside the optical cavity. (b) The lowest energy
levels of Hsys as a function of ωc/ωm for fixed G/ωm = 0.1. (c,d) show the avoided level crossings due
to the hybridization of zero- and two-photon states with mechanical states.
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states, nor by V̂DCE, which creates or destroys photon pairs.
However, the cavity losses can give rise to the decay
j2; 31i → j1; 31i. Hence, also the states jψ10i and jψ11i can
be indirectly involved in the signal dynamics.
Analogous quantum Rabi oscillations, giving rise to

discrete Fourier components, have been experimentally
observed for circular Rydberg atoms in a high-Q cavity
[79]. In this system, however, the different level anticross-
ings are not affected by different energy shifts.
In cavity QED, the strong-coupling dynamics produces

atom-field entanglement [80]. We investigate if this non-
perturbative regime of the DCE is able to produce entan-
glement between the mobile mirror and the cavity field,
when the mirror is excited by a coherent pulse and in the
presence of mechanical and optical dissipations. The time
evolution of the negativity is displayed in Figs. 5(a)–5(c).
As expected, N increases noticeably when the pulse
amplitude increases, so that the mirror dynamics is sig-
nificantly affected by the DCE. We observe that, while
decaying as a consequence of losses, the negativity displays
a nonmonotonic behavior analogous to that observed in
cavity QED [81].

E. Radiative decay of a mechanical excited state

Spontaneous emission is the process in which a quantum
emitter, such as a natural or an artificial atom, or a
molecule, decays from an excited state to a lower-energy
state and emits a photon. This cannot be described within
the classical electromagnetic theory and is fundamentally a
quantum process. Here we present numerical calculations
showing that a vibrating mirror prepared in an excited state
(mechanical Fock state) can spontaneously emit photons
like a quantum emitter. In this case, however, instead of a
single photon, a photon pair is emitted. Here, instead of
considering the coherent excitation of the vibrating mirror
as in usual descriptions of the DCE, we assume that it is
initially prepared in a Fock state. We consider the case
ωc ≃ ωm and the system is initialized in the state j0; 2i, with
ωc sufficiently detuned from the DCE resonance (minimum
avoided-level crossing) at ω0

c ≃ ωm, with δωc ≡ ωc − ω0
c ¼

0.1ω0
c, such that the effective resonant DCE coupling is

negligible. This k ¼ 2 mechanical Fock state can be
prepared, for example, if the vibrating mirror is strongly
coupled to an additional qubit [26], using the same
protocols realized in circuit QED [82]. After preparation,
the cavity can be quickly tuned into resonance: ωc → ω0

c. If
the cavity resonator is an LC superconducting circuit, its
resonance frequency can be tuned by using a SQUID. In
order to not affect the mechanical Fock state during this
nonadiabatic process, the tuning time must be shorter
than 2π/Ω2;0

0;2.
Figure 6 displays the mean phonon number hB̂†B̂i

(dashed blue curve), the mean intracvity photon number
hÂ†Âi (black solid curve), and the negativity (green filled

curve) calculated for g/ωm ¼ 0.1. Figure 6 also displays the
initial detuning δωc (red solid curve). Figure 6(a), obtained
using γ ¼ Ω2;0

0;2/5 and κ ¼ 2.5γ, describes the irreversible
mechanical decay due to both nonradiative (induced by the
mechanical loss rate γ) and radiative decay (induced by
V̂DCE). The radiative decay gives rise to non-negligible
light emission (black solid curve), and to transient mirror-
field entanglement. Figure 6(b), obtained using the lower
loss rates γ ¼ κ ¼ Ω2;0

0;2/80, shows vacuum Casimir-Rabi
oscillations. In this case, a photon pair can be produced at
t ¼ π/ð2Ω2;0

0;2Þ with probability close to one.

F. Analog nonperturbative DCE in all-optical systems

The nonperturbative description of the DCE in opto-
mechanical systems, presented here, can also be applied to
other all-optical quantum systems such as parametric

(a)

(b)

FIG. 6. Dynamics starting from a mechanical Fock state. The
blue dashed curves describe the mechanical signal hB̂†B̂i, while
the black solid curves describe the optical signal hÂ†Âi. The
green curves correspond to the negativity N . The cavity fre-
quency is initially detuned from the DCE resonance (δωc ¼ 0.1),
and the system is initially prepared in the state j0; 2i. Then the
cavity is quickly tuned to the DCE resonance (δωc → 0). The
initial detuning δωc is displayed as a small red solid curve in
the lower left-hand corner of both panels, near t ¼ 0. In (a), the
dynamics is evaluated in the weak-coupling regime. Panel
(b) displays the vacuum Casimir-Rabi oscillations that arise
when the system loss rates are low. The parameters used are
provided in the text.
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Figure 2. Left panel. Evolution of phonons (red curves) and photons (black curves) for an
optomechanical system prepared in the mechanical Fock state |0, 2〉, for matching energy splitting,
ωc ' ωm, in the weak-coupling regime with an oscillator loss rate γ = 0.2×Ω2,0

0,2, and a cavity loss rate

κ = 2.5γ. Here Ω2,0
0,2 the energy splitting of levels |0, 2〉 and |2, 0〉 calculated for G/ωm = 0.1. The inset

shows the same dynamics for γ = κ = Ω2,0
0,2/80, while the coherent exchange of excitations is almost

complete. Right panel. Average photon number nph(t) of STIRAP protocol for Vee (black curves)
and Λ (gray curves) scheme. Thick curve represents nph(t) for the Rabi Hamiltonian including the
stray couplings, while dashed lines refer to the case where only the stray RWA coupling is present.
The dot dashed gray line refers to the Λ scheme in the absence of stray couplings. The level schemes for
STIRAP are shown in the inset: the Stokes (frequency ωs, red arrows) and the pump (ωp, blue arrows)
fields couple factorized eigenstates |nu〉 of HR with selected dressed eigentates. In the Λ scheme they
are coupled to the dressed ground state |Φ0〉 (lower energy levels) while ìn the Vee scheme with the
excited states |Φ1±〉 (larger energy levels).

3. Generation of Two-Photon Pairs by STIRAP

Stimulated Raman Adiabatic Passage (STIRAP) is a coherent protocol that in its simplest version,
transfers population between two quantum states along a dark state of a three-level atom, enforced by
shining two light pulses in a counterintuitive sequence [26]. STIRAP is known to implement faithful
complete and robust population transfer. STIRAP in superconducting nanocrcuits has been studied
theoretically [27–29] and experimentally [30,31] since it can be used for new type of quantum gates [32]
possibly resilient to solid state quantum noise [33–38]. In the USC scenario STIRAP can be used
to detect virtual photons in the dressed eigenstates of the system, by coherently amplifying their
conversion to real photons [16,24,25]. We consider a three-level atom (basis {|u〉, |g〉, |e〉}) ultrastrongly
coupled to a single light mode of frequency ωc, resonant with the e.gtransition energy ε, described by
the Hamiltonian
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HR = ε |e〉〈e|+ εu |u〉〈u|+ ωc a†a + g(a + a†)(|e〉〈g|+ |g〉〈e|) (2)

where εu is the splitting between levels u−g respectively, and g is the coupling between the mode and
the e−g transition. Eigenstates of HR are partitioned in two sets: (1) factorized states |nu〉, where |n〉 is
a Fock state, with energy εu + nωc; (2) eigenstates of the two-level Rabi model |Φj〉 with eigenvalue
Ej. Due to USC these latter are strongly entangled atom-mode states, dressed by by virtual photon
pairs. A unique signature of USC in HR is the fact that the presence of virtual photon pairs allow
in principle to transfer population from |0u〉 to |2u〉 [12]. Coherent amplification of this channel is
obtained by using STIRAP. We first consider the Λ configuration, where εu < 0 (see the inset of
the right panel of Figure 2). The atom is prepared in |0u〉 and driven by an electric field yieldind
Hc(t) = W(t) [|u〉〈g|+ |g〉〈u|+ (1/η)(|e〉〈g|+ |g〉〈e|)], where η is the ratio between atomic dipole
matrix elements and W(t) = Ws(t) cos(ωst) +Wp(t) cos(ωpt) is a two-tone signal. STIRAP is obtained
by taking ωp ≈ E0 − εu, ωs ≈ ωp − 2ωc and the envelopes Ws/p(t) = Ws,p exp[−(t± τ)2/T2] where
Ws/p is the Stokes/pump field amplitude, τ is the delay, T is width of the pulses [16,25]. It may
yield ∼ 100% coherent population transfer |0u〉 → |2u〉 iff 〈Φ0|Hc|nu〉 6= 0, i.e., the Rabi ground
state contains pairs of virtual photons. The evolution of the average number of photons nph(t) in
this case is shown in Figure 2 (right panel, dot-dashed gray curve). Calculations are carried out for
g = 0.25ωc, ε′ = 4ε and ε = ωc. Field amplitudes Ws = 0.1 ωc and Wp are chosen such that they yield
the same Rabi frequencies Ωp = Ωs for the relevant transitions, large enough to guarantee adiabaticity,
WsT = 900, with delay τ = 0.6T. Absolute times reported in the figure correspond to ωc = 6 GHz.

Implementation of the protocol in artificial atoms faces the major problem that all the atomic
transitions are coupled to the mode. We focus on superconducting artificial atoms where the stray
coupling is accounted for by the extra term HΛ

stray = ηg(a + a†)(|g〉〈u|+ |u〉〈g|) [16]. The effect is
significant since a second channel for population transfer |0u〉 → |2u〉 opens. The two channels
interfere destructively, lowering the efficiency, as shown in Figure 2 (right panel, thick gray curve) for
η = 1. Since the stray coupling alone in the RWA may yield the desired population transfer (Figure 2,
right panel, dashed gray curve) measuring two photons in the cavity is anymore a smoking gun for
USC, unless the stray channel is weak enough not to guarantee adiabaticity in STIRAP. This requires
large anharmonicities, |εu| � ε, and small stray coupling, η � 1, conditions which are not met in
available devices.

This problem is circumvented by using the Vee field configuration, where εu > 0 (see the inset of
the right panel of Figure 2), with intermediate states |Φ1±〉 (the first excited doublet of the Rabi model).
The atom is driven by a two-tone signal W(t) with ωp ≈ εu − E1± and ωs ≈ ωp + 2ωc. Again STIRAP
occurs only if 〈Φ1±|Hc|2u〉 is large enough, being nonzero only if the intermediate states contain
virtual photons. Figure 2 (right panel, thick black curve) shows how the two-photon state populates
under Vee STIRAP. Differently than before, the Vee configuration allows to cancel the effect of the
stray coupling with available hardware, for instance flux qubits, as shown in Figure 2 (right panel,
dashed black curve). Therefore Vee STIRAP guarantees that we finally observe in the cavity two virtual
photons converted in real, i.e., a smoking gun of USC.

Curves for Vee STIRAP in Figure 2 are obtained for g = 0.25, εu = 2.5 ε and η = 1 showing
that suppression of the stray channel occurs for much softer spectral constraints than for Λ STIRAP.
This remarkable property is due to the fact that the stray pattern for population transfer does not
contribute to 〈Φ1±|Hc|2u〉 since transfer via RWA couplings only may in principle occur via a different
intermediate state which is largely detuned and so weak to spoil adiabaticity and yield practically zero
final population of the target state. This has the important practical consequence that the protocol
requires external fields with frequencies not larger than ∼ 10 GHz. Moreover since the two-photon
components 〈2u|Φ1±〉 of the dressed intermediate states are larger, the protocol in the Vee scheme
is much faster. Indeed black curves in the right panel of Figure 2 are obtained for WsT = 111.
Therefore the Vee protocol is less sensitive to decoherence and/or it may be operated with smaller
field amplitudes.
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4. Conclusions

In conclusion we have shown that Vee STIRAP yields the unambiguous signature of USC in
available architectures of superconducting artificial atoms, via detection of two-photons by coherently
amplified population transfer. On the contrary the usual Λ scheme for STIRAP is sensitive to the
presence of stray coupling, which may allow population transfer also in RWA, unless stringent
spectral contraints are met, which is not true for superconducting devices. Observing also that
population transfer requires less stringent conditions on the spectrum and on the external fields,
we conclude that demonstration of dynamical detection of USC by Vee STIRAP is well feasible in
available superconducting hardware.
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