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Abstract: Ultrastrongly coupled quantum hardware may increase the speed of quantum state
processing in distributed architectures, allowing to approach fault-tolerant threshold. We show that
circuit QED architectures in the ultrastrong coupling regime, which has been recently demonstrated
with superconductors, may show substantial speedup for a class of adiabatic protocols resilient to the
main source of errors, namely the interplay of dynamical Casimir effect and cavity losses.
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1. Introduction

Atom-cavity like systems in the strong coupling (SC) regime [1] implemented by circuit-QED
solid-state systems [2] are nowadays one of the most promising platforms for quantum hardware [3].
Systems of superconducting artificial atoms coupled in the SC regime to an electromagnetic resonator
are at the basis of the IBM, Intel, and Google quantum chips, the latter recently announced up to
72 qubits [4]. Recently entanglement has been demonstrated in systems with ten qubits [5]. Circuit-QED
architectures are moreover paradigm models for studying fundamental physics from measurement
theory [2] to quantum thermodynamics [6] and quantum communication [7].

We consider the simplest multiqubit architecture, two atoms coupled to a quantized mode,
described by the Rabi model [1,8]:

HR = ωc a†a− 1
2

2

∑
i=1

εi σi
3 + ∑

i
gi(t)(a† σi

− + a σi
+) + ∑

i
gi(t)(a σi

− + a† σi
+) (1)

Here ωc is the oscillator frequency and a† (a) are the annihilation (creation) operator acting on the
Hilbert space spanned by the Fock states {|n〉}. Pauli matrices σi

α for α = 3,± refer to the i = 1, 2 qubits
whose splittings are εi. The whole Hilbert space is spanned by the factorized basis {|n σ2 σ1〉}, where
|σi〉 = {|g〉, |e〉} are eigenstates of σi

3, with eigenvalue 1 and −1, respectively. Atoms-mode couplings
in the dipole approximation [1] are gi, which in the SC limit gi are large enough to overcome the atomic
decoherence rates (γi) and loss of the oscillator mode (κ). Moreover g� ωc which allows the rotating
wave approximations (RWA), where the counterrotating last term of HR is neglected. The resulting
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HRWA is a Jaynes-Cummings like Hamiltonian [1], whose dynamics conserves the number of excitation
N. Therefore it allows design of state processing with simple building block operations, namely
manipulations of single excitations across the network. The simplest family is based on Rabi swaps,
the cavity working as a quantum bus [9]. Transformations depend on gT, where T is the duration of
the gate, thus increasing g beyond the SC limit (typically g . 10−2 ωc) may lead to speed-up, which is
important for meeting the threshold for error correction.

2. Multiqubit Operation in the Ultrastrong Coupling Regime

In the last few years atom-cavity systems in the regime of ultrastrong coupling (USC), where
g ∼ 0.1− 1 ωc, have been fabricated on several solid-state platforms (see the review [10]). In the
simplest instance they are described by the full Rabi Hamiltonian Equation (1). The counterrotating
terms spoil conservation of N. A remarkable feature is that large values of g1 together with a
modulation in time determine the production of photon pairs, a phenomenon known as the dynamical
Casimir effect (DCE). As a consequence the USC quantum bus is sensitive to multiphoton generation,
and DCE deteriorates the fidelity of quantum operations [11] even in absence of decoherence.
This poses a fundamental limit for standard protocols based on Rabi oscillations.

To overcome this problem we propose a communication channel implemented by an adiabatic
protocol similar to STIRAP [12]. Implementation of STIRAP in individual artificial atoms has been
proposed [13,14] in the last few years. It has been recently demonstrated in the Transmon design [15,16],
and extended to achieve hybrid control of qutrits [17]. We first consider HRWA [18,19]: the system is
prepared in |0ge〉 i.e., qubit 1 is in the excited state, and we switch on g(2)(t) = g e−[(t+τ)/T]2 before
g(1)(t) = g e−[(t−τ)/T]2 . The protocol will end in |0eg〉, provided gT � 1 to guarantee adiabaticity of
the dynamics (in practice, gT > 5 is sufficient). If this is the case the intermediate state |1gg〉 is never
populated during the whole protocol, thus the cavity acts as a virtual quantum bus. The protocol leaves
unaffected the ground state |0gg〉, thus HRWA would implement ideal state transfer |0g〉(α|g〉+ β|e〉)→
|0〉(α|g〉 + β|e〉)|g〉 and other two qubit operations can be implemented with ∼ 100% efficiency.
One may wonder if in the USC regime STIRAP brings advantages over protocols based on Rabi swaps,
in view of the fact that the cavity is almost never populated which should reduce the impact of DCE
and photon losses.

We first study population transfer from the initial state |0g〉(α|g〉+ β|e〉) at the doubly resonant
point ωc = εi. In RWA the dynamics depends only on gT therefore the final population Pi(t f |g0T),
is constant on each line T = A/g0 (see Figure 1a). Larger A guarantees adiabaticity, the efficiency
of population transfers being ∼ 1 for A > 5. In the USC regime, with cavity losses modeled by the
replacement ωc → ωc − iκ, results in Figure 2 shows that: (1) the final population of |0gg〉 is unaffected
by USC even if during the protocol it is (blue curve); (2) population from |0ge〉 is transferred in |0eg〉
(red curves); (3) the main imperfection appearing for g/ωc . 0.2 is population of |1gg〉 at intermediate
times (magenta curve), whereas for larger g & 0.5 leakage from the N = 0, 1 subspaces (related to
DCE) is the dominant stray effect.

For increasing g, the protocol becomes faster. Notice in particular that passing from the SC regime
with g = 0.01 regime to USC with g = 0.5, the typical time scale for the protocol reduces from T ≈ 1000
to T ≈ 40 (in units of ωc). However, while the needed T scales as 1/g up to g ∼ 0.2, further increase
of g brings no advantage, since leakage to the N = 2, 3 subspaces becomes relevant. Although the
STIRAP protocol would be by itself resilient to leakage due to symmetries in the Hamiltonian, this is
no longer true in the presence of cavity losses, the main source of decoherence in present USC systems.
Then leakage becomes irreversible and produces a substantial loss in the fidelity of population transfer.
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Figure 1. (a) Efficiency of population transfer P|0eg〉(t f ) in the N = 1 manifold for Rabi model and for
the RWA (straight lines) for κ = 0. (b) The same for κ = 0.005, showing a region around g/ωc = 0.15
where one may take advantage of the ultrastrong coupling, while at larger g combination of DCE and
decay spoil the efficiency. (c) Sensitivity of population transfer to detunings, showing that the protocol
is robust against fluctuations in a wide region about the resonance point δ = δp = 0, and that positive
single photon detuning δp > 0 may further increase the efficiency.

Figure 2. Population transfer by STIRAP in RWA and USC, at the doubly resonant point ωc = εi,
for initial state |ψ0〉 =

√
0.2|0gg〉+ i

√
0.8|0ge〉 and τ = 0.7 T. Colors: blue (P|0gg〉), red (P|0ge〉 and P|0eg〉),

magenta dashed (P|1gg〉), black dashed (sum of the above populations, i.e., the STIRAP subspace), thick
gray (RWA). Parameters are in units of ωc. Counterrotating terms do not modify the RWA behavior up
to g0 ∼ 0.15 ωc, which is a nearly optimal value for minimizing T; notice that a larger κ = 0.005 is used.
At stronger coupling adiabaticity requires a less favorable scaling of T, and leakage from the STIRAP
subspace occurs; this leakage is reversible for κ = 0 (due to the symmetries of the Hamiltonian) but
becomes detrimental for finite κ.

In realistic cases κ increases with g but the protocol requires smaller time. Therefore there will be
a tradeoff between speedup and errors due to the interplay of DCE and losses. To address this point
we compare state transfer in the USC regime and in RWA, characterizing the impact of DCE plus losses
as a function of g and T. Figure 1a shows the efficiency of population transfer in the N = 1 subspace
for κ = 0. For HRWA it displays the dependence on gT only. This behavior approximately holds in
the USC regime, the DCE reducing the efficiency for g > 0.3. The favorable region shrinks due to the
interplay with cavity losses (Figure 1b, where κ = 0.005), but still in a region around g ∼ 0.15 one
may take advantage from USC. In this region we then study robustness of population transfer against
parametric fluctuations, which is one of the main assets of STIRAP. Figure 1c shows that the protocol
keeps a very large efficiency in region around the doubly resonant point where the single-photon
detuning δp = ε1 −ωc and the two-photon detuning δ = ε1 − ε2 are nonvanishing. Notice that since
the energy scale in the figure is ωc this stability region is very large. Therefore the protocol is very
robust, a feature essentially due to the USC between artificial atom and cavity. Another important
property is that using non-vanishing single-photon detuning δp > 0 the efficiency is further increased.
Both features have important consequences that we briefly discuss in the conclusions.
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3. Conclusions

We have shown that a protocol based on STIRAP allows ultrafast and reliable state transfer in
the USC regime, up to relatively large values of the qubits-field coupling strength g ∼ 0.2, in spite of
the joint presence of DCE, inducing leakage from the computational subspaces, and of large cavity
losses determining Markovian decoherence. On the contrary protocols based on Rabi swaps are very
sensitive to DCE [11], noise further degrading performances. In addition the STIRAP-based protocol is
much more robust, a detailed study of population transfer has showing that very large efficiencies
> 99% may be reached in a wide region of the space of the parameters. This property is essentially
due to the large coupling strength achieved in the USC regime, and it has the important consequence
of rendering our protocol resilient also to low-frequency noise [20,21]. Since STIRAP-based protocols
may also be used to generate entanglement, this resilience may provide an alternative strategy to
fight decoherence in two-qubit gates [22]. Therefore, it would be interesting to investigate other
STIRAP-inspired protocols for multiqubit entanglement generation in the USC regime, and compare
with other existing proposals [23]. Another important feature is that we have shown that efficiency
may be further increased by using a non-vanishing single-photon atom-cavity detuning. This feature
is reminiscent to what happens in a protocol called hyperstirap [12], where efficiency can be further
increased by a proper phase modulation [14] of the control. Therefore it can be foreseen that optimal
control techniques [24,25] could further improve the fidelity of such operations, also exploiting
coupling schemes based on modulation of detunings [19,26].
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