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Abstract: We report the presence of an asymmetry that arises when considering the performances
of quantum communication channels whose outputs are connected via a rigid, distance-preserving,
yet not completely-positive, transformation. From a classical perspective these transmission lines
should exhibit the same communication efficiency which is lost in the quantum setting.
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1. Introduction

Quantum information theory often relies on harnessing effects which are counterintuitive with
respect to the classical intuition to produce technological applications. One such effect arises when
trying to communicate a chosen direction to a distant party. Indeed it turns out that, if we encode
the directional information on the state of two quantum spin systems, such direction can be more
efficiently estimated when using antiparallel spins rather than parallel ones [1]. The presence of similar
asymmetries was recently reported in Ref. [2] in the broader context of classical communication on
noisy quantum channels [3] by introducing the notion of reciprocal quantum maps. A reciprocal pair
of quantum channels are two communication lines Φ1 and Φ2 acting on the same system which admit
a rigid, distance-preserving, yet not completely-positive transformation Λ that allows one to reproduce
the outcome of the first from the corresponding outcome of the second, i.e.,

Φ1 = Λ ◦Φ2 , (1)

the symbol “◦” representing super-operator composition. From a classical perspective these
transmission lines should exhibit the same communication efficiency as the relative distance between
different output states are exactly the same for the two mappings. This is no longer the case in the
quantum setting where explicit asymmetric behaviours can be found. In the following we report a
special instance of this effect that one can observe when analyzing the case of depolarizing channels [4].

2. Results

A depolarizing quantum channel D(d)
λ is a completely-positive transformation which, acting on a

quantum system S of dimension d, transforms its density matrices ρ into the output states

D(d)
λ [ρ] = λρ + (1− λ)Tr[ρ] I/d , (2)
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with λ a real parameter that characterizes the level of noise introduced by the map, and with I being
the identity operator on the Hilbert spaceHS of S [4]. Complete-positivity forces λ to only take values
in the interval [λm(d), 1], the lower threshold being the negative quantity

λm(d) := −1/(d2 − 1) . (3)

This set of maps have been extensively studied. In particular their associated classical and
entanglement assisted capacities [3] have been explicitly computed, resulting in the following analytical
expressions [4]:

C(D(d)
λ ) = log2 d− Smin(D

(d)
λ ), (4)

CE(D
(d)
λ ) = C(D(d2)

λ ), (5)

with Smin(D
(d)
λ ) := minρ

{
−Tr[D(d)

λ (ρ) log2(D
(d)
λ (ρ))]

}
being the minimum von Neumann entropy

attainable at the output of the channel, i.e., the quantity

Smin(D
(d)
λ ) = −1 + (d− 1)λ

d
log2

(
1 + (d− 1)λ

d

)
− (d− 1)

1− λ

d
log2

(
1− λ

d

)
. (6)

As also evident from Figure 1, the functions (4) and (5) exhibit a non-symmetric behaviour
with respect to sign inversion of noise parameter in the domain where this is allowed, i.e., for λ ∈
[λmin(d),−λmin(d)]. In particular given λ ∈ [0,−λmin(d)] we have

C(D(d)
λ ) < C(D(d)

−λ), (7)

CE(D
(d)
λ ) < CE(D

(d)
−λ), (8)

with the only exception of d = 2 for which Equation (8) still holds but (7) is replaced with an identity
(the function C(D(d=2)

λ ) being even in the domain [λmin(d = 2),−λmin(d = 2)]).
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Figure 1. Plots of the classical capacity C(D(d)
λ ) of Equation (4) and entanglement assisted classical

capacity CE(D
(d)
λ ) of Equation (5) as a function of the noise parameter λ belonging to the interval of

interest [λmin(d),−λmin(d)], for d = 2 (left panel) and d = 3 (right panel). Notice the asymmetric

behaviour of CE(D
(d)
λ ) and C(D(d=3)

λ ) (the classical capacity C(D(d=2)
λ ) instead is symmetric). The

insets show the capacity for the full range of λ. All the curves have being rescaled by log2 d.
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It turns out that this is exactly the kind of example we are looking for. Indeed given
λ ∈ [0,−λmin(d)], the channels D(d)

λ and D(d)
−λ represent an instance of reciprocal pairs, connected

as in Equation (1) via the linear transformation

Λ[· · · ] := −Id[· · · ] + 2Tr[· · · ] I/d , (9)

with Id representing the identity channel, i.e., D(d)
−λ = Λ ◦ D(d)

λ . Equation (9) is not completely positive,
but as required by our definition, it acts as a rigid transformation which preserve the relative distance
between states, i.e.,

‖Λ[ρ1]−Λ[ρ2]‖ = ‖ρ1 − ρ2‖ , (10)

for all ρ1 and ρ2, and for all suitable norm ‖ · · · ‖ (e.g., the trace-class norm).
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