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Abstract: When two operators A and B do not commute, the calculation of the exponential operator
eA+B is a difficult and crucial problem. The applications are vast and diversified: to name but a few
examples, quantum evolutions, product formulas, quantum control, Zeno effect. The latter are of
great interest in quantum applications and quantum technologies. We present here a historical survey
of results and techniques, and discuss differences and similarities. We also highlight the link with the
strong coupling regime, via the adiabatic theorem, and contend that the “pulsed” and “continuous”
formulations differ only in the order by which two limits are taken, and are but two faces of the
same coin.
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1. Introduction

Quantum control is a relatively novel discipline, in which one seeks to control the evolution or the
final state of a quantum system or to determine the output of a quantum process. The main objective
is to counter the detrimental effects of (uncontrollable) noise and environment. The inspiration goes
back to classical control, where one would make some measurement of the output and then use the
results of such measurement to obtain the desired outcome (feedback mechanism). Similar ideas
(but different techniques) motivated the development, in the 1970s and 1980s, of nuclear magnetic
resonance imaging, towards very successful applications in medical diagnosis. The objective in that
case was to control (spin) coherence.

In quantum mechanics and quantum applications things become more involved, because a
quantum measurement collapses the wave function, thereby strongly affecting the quantum evolution.
The question becomes: what can one actually do to a quantum system (from carefully tailoring
measurements to accurately designing Hamiltonians or even Lindbladians) that will enable some
control of the output? In an even more recent twist, some researchers have also considered the option
of engineering the environment itself, towards specific quantum goals.

The quantum control problem translates to rotating a vector state from a specified initial direction
to a desired final direction in a certain time. In a more general setting, this means evolving a generic
state (density matrix) from a given initial state to a desired final state in a certain time. This is a difficult
task, which essentially consists in the construction of a suitable transformation, in agreement with the
guiding principles of quantum mechanics. We highlight in this article two main techniques that are
studied nowadays.
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2. Divide et Impera (Divide and Conquer)

2.1. History

In 1948 Feynman, working on his path-integral formulation of quantum mechanics [1–3] noticed
that one can obtain the quantum evolution by applying the following formula

UN(t) =
(

e−i t
N Te−i t

N V
) (

e−i t
N Te−i t

N V
)
· · ·
(

e−i t
N Te−i t

N V
)

︸ ︷︷ ︸
N times

=
(

e−i t
N Te−i t

N V
)N
→ e−it(T+V) = e−itH , as N → ∞, (1)

where H = T + V is the Hamiltonian of the system, T and V being respectively the kinetic and
potential energy. Feynman strived to bypass a crucial difficulty that plagues (exponentiated) quantum
operators. Formula (1) is valid although T and V do not commute: the key observation is that the
error one makes in approximating the evolution with the N-product is of order 1/N, and disappears
in taking the limit.

Feynman built on a crucial observation that Dirac had made 15 years earlier [4], concerning the
infinitesimal expression of the quantum propagator. Feynman made no attempt at rigor (beyond the
reasonable level of theoretical physics), unlike (presumably) Dirac, who did not dare to go beyond
infinitesimal evolutions.

In fact, mathematicians independently worked on what they called product formulae. Trotter in
1959 [5] and Kato in 1978 [6] investigated the limits of products of the following type

VN(t) =
(

eA/NeB/N
) (

eA/NeB/N
)
· · ·
(

eA/NeB/N
)

︸ ︷︷ ︸
N times

=
(

eA/NeB/N
)N
→ eA+B, as N → ∞,

(2)

and proved convergence for certain unbounded (linear) operators A and B. Both Trotter and Kato
were extending results by Lie [7], who had proved the validity of Equation (2) for n× n matrices.

2.2. Zeno

Misra and Sudarshan’s formulation of the quantum Zeno effect [8,9] makes use of the
following formula

UN(t) =
(

e−i t
N H P

) (
e−i t

N H P
)
· · ·
(

e−i t
N H P

)
︸ ︷︷ ︸

N times

=
(

e−i t
N H P

)N
→ e−itHZ P, as N → ∞,

(3)

where P is a projection operator and HZ = PHP the “Zeno” Hamiltonian [10]. Notice that in general
UN(t) is not unitary on the range of P, while the limit is, under suitable conditions and in particular
cases, such as bounded H or finite-dimensional P [11]. A general proof of the above formula is
still missing, together with a rigorous definition of the Zeno Hamiltonian for infinite-dimensional
projections and unbounded Hamiltonian.

Interestingly, the above formula can be re-written in terms of an absorbing “optical potential”.
Let P + Q = 1, with both P and Q projections. Then, by making use of the identity (valid in general,
but we take γ > 0)

e−γQ = P + e−γQ, (4)
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one gets
UN(t) =

(
e−i t

N He−γQ
) (

e−i t
N He−γQ

)
· · ·
(

e−i t
N He−γQ

)
︸ ︷︷ ︸

N times

=
(

e−i t
N He−γQ

)N
→ e−itHZ P, as N → ∞,

(5)

which is essentially the same as (3). In a few words, the above formula works because the imaginary
optical potential iγQ quickly (on a timescale 1/Nγ) absorbs away the unwanted component of the
wave function, acting as a projection P.

Observe also that formula (3) is at the basis of the Faddeev-Popov method [12] to quantize
gauge quantum field theories within the framework of the path integral formulation. In this case,
the projection imposes the gauge condition.

The afore-mentioned formulas are at the basis of the “pulsed” formulation of quantum control.
Physically, the validity of the constraint is preserved during the evolution, but the quantum system is
free to move within the (Zeno) subspaces of the (multidimensional constraint) [10]. In applications,
P must be designed in such a way as to reduce (or hinder) decoherence.

2.3. Kicks

In a similar spirit, physically equivalent dynamics can be obtained for a quantum system
undergoing repeated unitary “kicks”, the physical duration of the kick being the shortest timescale of
the problem (notice the analogy with a projection, that is also supposed to take place instantaneously).
The evolution reads

UN(t) =
(

e−i t
N HUkick

) (
e−i t

N HUkick

)
· · ·
(

e−i t
N HUkick

)
︸ ︷︷ ︸

N times

=
(

e−i t
N HUkick

)N
∼ e−itHZUN

kick, as N → ∞, (6)

where
HZ = ∑

n
PnHPn (7)

is the Zeno Hamiltonian and Pn the spectral projections of the kick (taken with a discrete spectrum)

Ukick = ∑
n

e−iλn Pn. (e−iλn 6= e−iλl , for n 6= l.) (8)

This is again a Zeno dynamics. The Zeno subspaces are now a consequence of rapidly oscillating
phases between different eigenspaces of the kick, yielding a superselection rule. This phenomenon
was discovered in chemical physics, where it is known as NMR [13–16], and (re)baptized “bang-bang”
control in the quantum-information literature [17]. A very nice review is [18].

Finally, we mention that the same formulas are of crucial importance in the study of quantum
chaos [19–21]. Set t = Nτ, keep τ fixed, and let Ukick = e−iτ0V , where τ0 is needed for dimensional
purposes. The evolution is(

e−iτTe−iτ0V
) (

e−iτTe−iτ0V
)
· · ·
(

e−iτTe−iτ0V
)

︸ ︷︷ ︸
N times

=
(

e−iτTe−iτ0V
)N

, as N → ∞, (9)

where T is a kinetic energy operator and V a potential. In the above formula V is not divided by N, so
that the evolution is governed by a singular time-dependent Hamiltonian H = T + τ0 ∑n δ(t− nτ)V.
Notice that unlike in formula (6), since τ is kept fixed, this is a large-time limit t = Nτ → ∞.
Alternatively, the evolution (9) can be thought as a sequence of purely kinetic and purely potential
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motions in which alternately the force is switched off (for a time τ) and the mass made infinite (for a
time τ0) [20].

3. Persuade et Rege (Persuade and Rule)

Short timescales are physically associated with strong couplings. It must therefore be possible to
rephrase the above evolutions in terms of a strong (continuous) coupling. Let

HK = H + KHc, (10)

where H is the Hamiltonian of the system, Hc an interaction Hamiltonian performing a “continuous
measurement” and K a coupling constant.

We are interested in the K → ∞ limit of the evolution operator

UK(t) = e−itHK ∼ e−itHZe−itKHc , as K → ∞, (11)

where HZ is given in Equation (7), Pn being the spectral projection of Hc (taken with a discrete spectrum)

Hc = ∑
n

ηnPn, (ηn 6= ηm, for n 6= m) . (12)

These results are consequences of the adiabatic theorem [22]. The Zeno subspaces are again
a consequence of the wildly oscillating phases between different eigenspaces. One can interpret
the above results by saying that the external field/potential takes a steady, “persuading gaze” at
the system.

4. Equivalence between Continuous and Pulsed Formulations

The similarity between the “kicked” and “continuous” formulations, outlined in Section 2.3 and
Section 3, is in fact even more profound. The two procedures are physically equivalent, and only differ
in the order in which two limits are computed [23].

The continuous case considers Equation (10) in the strong coupling limit K → ∞, while the kicked
dynamics is generated by the time-dependent Hamiltonian

Hkick = H + τ0 ∑
n

δ(t− nτ)Hc, (13)

where τ is the period between two kicks and Ukick = exp(−iτ0Hc). The N → ∞ limit in (6) corresponds
to τ → 0. The Hamiltonians (10) and (13) are both limiting cases of the following one

H(τ, K) = H + K ∑
n

g
(
t− n(τ + τ0/K)

)
Hc, (14)

where g(t) = χ[−τ0/2K,τ0/2K](t), with a fixed τ0 > 0. In Equation (14) the period between two kicks is
τ0/K + τ, while the kick lasts for a time τ0/K. By taking the limit τ → 0 in Equation (14) (a sequence
of pulses of finite duration τ0/K without any time interval among them), one recovers the continuous
case (10): H(τ, K) → HK, as τ → 0. One takes afterwards the strong coupling limit K → ∞ and
gets the Zeno dynamics and subspaces. Let us now invert the order of the limits: first take the
K → ∞ limit (short pulses, but with the same global—integral—effect), to obtain the kicked case (13):
H(τ, K)→ Hkick, as K → ∞. Then, take the vanishing time interval limit τ → 0 to get again the Zeno
dynamics and subspaces.

In short, by denoting with Uτ,K(t) the unitary evolution generated by H(τ, K), the formal
equivalence between the two protocols is expressed by the relation

lim
K→∞

lim
τ→0

Uτ,K(t) = lim
τ→0

lim
K→∞

Uτ,K(t), (15)



Proceedings 2019, 12, 30 5 of 6

with the left (right) side expressing the continuous (pulsed) case. This equivalence is only valid in the
limit. It is physically legitimate if the inverse Zeno regime [24] is avoided. In practice, for finite N and
K, there can be important differences [25].

5. Comments and Conclusions

The above discussion hinged upon Schrödinger equations, unitary dynamics, and projections à
la von Neumann. This is only a part of the whole picture. Most results can be generalized to master
(GKLS [26]) equations, quantum semigroups, and sequences of generic quantum operations [27–30].
Moreover, the analysis can be extended to multidimensional spaces, highlighting interesting relations
with geometry [31,32] and complexity [33].

American composer Harold Budd once said: “But that’s fine, because I like to have control of the
ambience.” Lucky him. Physicists and mathematicians can only endeavor to control the system, out of
the (often detrimental) effects of the environment.
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