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Abstract: An investigated process can be studied in terms of the causal relations among the involved
variables, representing it as a causal model. Some causal models are particularly relevant, since they
can be tested through mathematical constraints between the joint probability distributions of the
observables. This is a valuable tool because, if some data violates the constraints of a causal model,
the implication is that the observed statistics is not compatible with that causal structure. Strikingly,
when non-classical correlations come to play, a discrepancy between classical and quantum causal
predictions can arise, producing a quantum violation of the classical causal constraints. The simplest
scenario admitting such quantum violation is given by the instrumental causal processes. Here, we
experimentally violate an instrumental test on a photonic platform and show how the quantum
correlations violating the CHSH inequality can be mapped into correlations violating an instrumental
test, despite the different forms of non-locality they display. Indeed, starting from a Bell-like scenario,
we recover the violation of the instrumental scenario through a map between the two behaviours,
which includes a post-selection of data and then we test an alternative way to violate the CHSH
inequality, adopting the instrumental process platform.

Keywords: quantum information; quantum causality; causal inference; quantum violation;
instrumental process; instrumental inequalities; chsh inequality

1. Introduction

A most relevant quest in science is inferring the causal relations underlying a system of interest,
exploiting the statistics of collected data. To achieve this task, data needs to be supplemented with
some causal assumptions, in order to falsify or validate a given causal model, taken as hypothesis [1].
A causal model is the representation of a process in terms of the causal relations among the involved
variables, both those that are observables and those that are not (latent or hidden). All of the variables
form a Bayesian network. The field that aims to determine whether observed data is compatible
with a given Bayesian network or not is causal inference, largely studied by Pearl [2], and it relies on
the mathematical constraints among the joint distributions of the observables. Indeed, some causal
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models allow for inequalities, in the simplest cases made of linear combinations of the observed
joint probabilities, which, if violated by data, lead to refute them as the causal structure underlying
the system of interest. Unfortunately, this is not always the case, since not all causal models have
testable implications.

For instance, the causal model represented in Figure 1a is compatible with any joint distribution
of A and B and, if one wants to determine whether an event A affects or not an event B, observational
data is not enough, one has to resort to interventions [2]. In turn, the causal models in Figure 1b,c have
testable constraints already at the level of observational data. Hence, the simplest model, in terms of
the number of nodes within the corresponding Directed Acyclic Graph (DAG) [2], to which we must
resort to exclude that a variable A is affecting a variable B is the instrumental process (see Figure 1c),
that admits the instrumental inequalities [1,3,4]. This makes the instrumental causal model an essential
tool in a wide range of fields, from economics to medicine, as it allows to estimate causal dependencies
even in the presence of unobserved common causes.
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Figure 1. Directed Acyclic Graphs representing causal models. In this figure, we show three different
causal models represented by Directed Acyclic Graphs (DAG) [2], where each node represents a variable
and the arrows link variables between whom there is a causal relationship. (a) This is the simplest causal
model in which a variable A has an influence over B, but it has no testable mathematical constraints
characterizing the allowed joint probabilities p(a, b). (b) The causal model of a CHSH scenario, where
the parties Alice (A) and Bob (B) share a system and choose the basis on which to measure it according
two independent variables, X and Y. Hence, no communication must occur between A and B. (¢) DAG
representing the instrumental scenario, whose main difference from the CHSH Bell-like scenario, is
the presence of a classical channel of communication between the parties, i.e., A has a causal influence
over B.

Strikingly, the mathematical constraints corresponding to a generic causal model do not
necessarily hold, when switching from the classical to the quantum realm and this discrepancy
between classical and quantum causal predictions have brought to the development of the field of
quantum causal modelling [5-13]. The best known example is represented by the CHSH Bell inequality
(see Figure 1b) [14,15]. This scenario is made of two parties, Alice and Bob, sharing a bipartite state,
with the possibility to independently choose between two binary observables each (respectively A
or A’ and B or B’). In this context, if all the involved variables are classical, the following inequality
holds: S = |(A,B) + (A,B') + (A’,B) — (A’,B')| < 2, where (A,B) = ¥,,(—1)"**p(a,b) and the
sum is carried over the four combinations of Alice’s and Bob’s outputs (4, b). When Alice and Bob
share an entangled state, however, for dichotomic measurements, the upper bound of S shifts to
2+/2 (Tsirel’son bound) [16]. The same happens for many other causal structures, beyond the CHSH
scenario, as investigated in many recent studies [17-23], and for some classes of non-trivial inequalities
within instrumental scenario [3,4], where Bob’s choice between d binary observables is determined by
the output of Alice’s d — outcome measurement while, in turn, Alice chooses among her n observables,
according to the value of a classical variable X, called Instrument [24]. Hence, the main difference
between Bell-like and instrumental scenarios is constituted by the presence of a classical channel of
communication between Alice and Bob.

In this work, we are showing the experimental violation of the following instrumental inequality
on a photonic platform, reported for the first time in [24]: T3, = — (B); +2(B), + (A); — (AB); +
2 (AB); < 3, where (AB), = Zﬂ/b(—l)“bp(a, b|x) and the subscripts in Z | || 5| indicates the number
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of possible values of the variables, x, a and b. The upper limit of this inequality becomes 1+ /2 & 3.828,
when the parties share an entangled state. Then, we experimentally apply the theoretical results
reported in [25], mapping the quantum correlations within the CHSH scenario into those of the
instrumental. Indeed, it is possible to recover the instrumental inequality [3], expressing it as a
function of the CHSH violation, obtained within a Bell-like scenario. This mapping, as mentioned
before, requires a post-selection of the data collected in the Bell-like scenario, in order to simulate
the communication channel between the parties characterizing the instrumental causal structure.
Moreover, adopting the instrumental scenario, there is an alternative procedure, described in [25],
to test the CHSH inequality, without the need of observing all the correlations for the 4 input pairs

(x,y) € {(0,0),(0,1),(1,0),(1,1)}.
2. Results

2.1. Active Feed-Forward of Information

In order to experimentally implement an instrumental process and violate the aforementioned
13y inequality’s upper bound, we adopt a photonic platform, depicted in Figure 2, encoding the qubits
in the degree of freedom of the photons’ polarization. The generated state is a singlet, [¢~) = %
obtained through a Spontaneous Parametric Down-Conversion process (which constitutes our hidden

variable A).

14 Coincid \
QJ oincidence

< box
Single-mode fiber
- Detector

D Pockels Cell

[:] SPDC Source
I Half-wave plate

. Coupler

Polarizing
| beam splitter

Figure 2. Experimental Apparatus. We generate a singlet state through a SPDC process (constituting
our hidden variable A) that is shared by the two parties A and B. On A’s path, the measurement station
is made by a HWP followed by a PBS, since the qubits are encoded in the polarization of the photons.
On B’s path, there is an analogous measurement station, but, before the HWP H;, we put a Pockels
cell, to switch from one operator to the other, in the case of active feed-forward, i.e., triggering a high
voltage application to the Pockels cell and making it behave as a HWP, while, when it is not triggered,
it performs the identity. The voltage application is triggered by Alice’s detector A (i.e., corresponding
to output 0), whose signal is split and sent both to a coincidence counter and to the Pockels cell. In the
post-selection case, the Pockels cell is not triggered and A and B choose independently the measurement
basis, performing the desired observables rotating respectively H; and H,.

’

The pair of entangled photons is shared between Alice (A) and Bob (B). The two parties
measurement stations are composed by a half-wave plate (HWP) followed by a Polarizing Beam
Splitter (PBS). The communication channel is implemented putting a Pockels cell on Bob’s path,
before the HWP H,, connected to Alice’s detector A;. Hence, when this detector clicks (corresponding
to Alice’s outcome 0), its signal is split and sent both to the Pockels cell and to a coincidence counter.
The signal triggers the application of a high voltage (~1250 V) to the cell, which then behaves like a
HWP, while otherwise it performs the identity. In this way, we can switch between the two observables
on Bob’s side, within the order of nanoseconds time. In the meantime, Bob’s photon is delayed
through a 125 m long single-mode fiber, which delays the photon of ~600 ns. We refer to this kind of
communication channel between A and B as active feed-forward of information [26,27].
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In the present case, where the generated state is |~ ), we make Alice choose the observables to
perform among (0y — 0)/+/2, —0y and ; and Bob between (cy — 03)/+v/2 and — (0 + 02) /V/2.
The observed violation of Z3p> < 3 instrumental inequality is Zzp» = 3.358 £ 0.020.

2.2. Post-Selection Scenario

The aforementioned classical channel of communication between the parties characterizing the
instrumental process, experimentally implemented through the trigger of the Pockels cell, can be also
simulated through a post-selection of data. In other words, through the same experimental apparatus
(see Figure 2), we keep the Pockels cell switched off and perform, through the rotation of H; and Hp
HWP, all the combinations of Alice’s and Bob’s observables. Afterwards, we take into account only
the events for which Bob’s choice corresponds to Alice’s outcome. We apply this procedure to violate
Bonet’s instrumental inequality [3], i.e., Zpoper = p(a = b|0) + p(b = 0|]1) + p(a = 0,b = 1]2) < 2
where the involved probabilities are expressed as p(a, b|x). In this case, when Alice and Bob share
a bipartite entangled state, Zp,;’s value can be larger than 2, up to (3 + \/i) /2 ~ 2.207, and the
maximal violation corresponds to 2-qubit maximally entangled states, as before. The observables
that correspond to the maximal violation, for the quantum state |(~), are —0y, 0 and (0 — 03)/V/2
for Alice and (o — 03)/+/2 and (0y + 03)/+/2 for Bob, respectively when he gets a4 = 0,1 as input.
The obtained violations are reported in purple in Figure 3, whose weighted average is: 2.1713 £ 0.0022.

The most interesting feature of this procedure is that, since there is no active feed-forward of
information, Alice and Bob choose their measurements bases independently, as in a Bell-like test. As a
matter of fact, in [24] it has been shown that performed in this way the instrumental scenario can be
seen as testing a stronger form of non-classicality, showing the incompatibility of quantum correlations
with specific classes of non-local hidden variable models. However, if we indicate respectively with n
and d the number of observables among which Alice and Bob can choose, a quantum violation of the
instrumental scenario cannot be observed for (n,d) < (3,2) [9,24], while, for the case (n,d) = (2,2),
the CHSH inequality can be violated. Anyway, as we show experimentally in what follows, any
quantum correlations in the CHSH scenario can be used as a resource to violate Bonet’s inequality.
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Figure 3. Experimental results. In this plot we show the experimental quantum violations of Bonet
and CHSH inequalities obtained from 16 experimental runs in the post-selection regime (for both
scenarios the classical upper bound is 2). In purple and blue, we show respectively the Bonet’s and
CHSH violations obtained through the apparatus described in Figure 2 section, keeping the Pockels cell
switched off and performing Alice’s and Bob’s measurements, rotating the HWPs. In orange, we show
the extent of the Bonet inequality’s violation that can be obtained from the probabilities p(a,b | x,y)
belonging to the CHSH scenario. In green, we show the CHSH violation obtained on an instrumental
process platform, through an alternative procedure which does not require the correlations between all
of the 4 combinations of the inputs (x,y).
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2.2.1. Relation between Bonet and CHSH Inequality Violation

Adopting the apparatus depicted in Figure 2, with no active feed-forward, we make Alice and Bob
independently choose respectively the observables to apply to |~ ) between —oy and 0, and between
(0x — 03)/v/2and (0y 4 0)/\/2 (we are in the regime n = 2,d = 2). Then, we combine the observed
mean values, to evaluate the corresponding S. The obtained violations of the CHSH inequality are
represented in blue, in Figure 3, whose weighted average is: 2.5518 % 0.0020.

Now, from these CHSH violations, we want to violate Bonet’s instrumental inequality. Hence,
in order to express Zp,,e+ as a function of the probability distributions obtained within the Bell
scenario, we need to lift Bonet’s inequality via the mapping p(a, b|x) — p(a, b|x,y = a). We therefore
find Iggﬁif = 1 (CHSH) — p(11]20) + 3 [25]. To evaluate p(11]20), we must map the p(a, b|x,y)
characterizing the CHSH scenario, which belongs to the case (n = 2,d = 2), to p’(a, b|x,y), with (n = 3,
d = 2). This map is p/(a,b|x,y) = p(a,blx,y) for x = 0,1 and p'(a,b|2,y) = é,0p(bly) for x = 2,
making p’(11]20) = 0.

So the relation between Zg,,,; and the CHSH inequality, for p’(a,b|x,y), is I g:m ;= 1 (CHSH) +3.
It is noteworthy to stress that the existence of this mapping does not imply that the non-classicality
revealed by the violation of a Bell inequality or an instrumental are of the same kind. Indeed, the data
post-selection, which is required by this procedure, is not a Bell non-locality free operation, as it can
increase the non-locality of the observed behaviour. The need of performing a post-selection to move
from one scenario to the other already suggests that the non-classicality of the correlations revealed by
a quantum violation of the instrumental inequalities is stronger than in a Bell-like scenario (see [24] for
further details).

The obtained Bonet’s inequality violations are represented in orange in Figure 3, whose weighted
average is: 2.10218 =+ 0.00089.

2.2.2. CHSH Violation within an Instrumental Process

The connection between the instrumental and the CHSH scenario can also be expressed as
follows: } (CHSH), + 3 = p(00|00) + p(11]01) 4 p(00[10) + p(10[11) + pgjy(1]0). Hence, the CHSH
can be alternatively tested using 3 choices of an input X, instead of testing the correlations between
the 4 choices of the inputs (x,y). In this procedure, when x = 0,1 Alice’s output selects Bob’s choice,
as in the usual instrumental scenario, while, when x = 2, Alice’s party is not tested, while Bob’s input
is deterministically equal to 0 and his output is registered, in order to evaluate ppy(1|0). Through this
procedure, we obtained the CHSH violation represented in green in Figure 3, whose weighted average
is: 2.5053 £ 0.0039.

3. Discussion

Summarizing, in this work, we experimentally study the instrumental scenario, showing the
violation of an equivalent of Bonet’s inequality (indicated in the text as Z3p;) on a photonic platform.
Then, we apply the theoretical results of [25] and experimentally confirm that the non-classical
correlations revealed by a CHSH quantum violation, augmented by a non-local post-selection operation
whereby Bob’s input is set equal to Alice’s output, give rise to the quantum violation of Bonet’s
instrumental inequality. We note that, in [25], it is claimed that since, upon such behaviour mapping,
Bonet’s inequality is violated if and only if the CHSH inequality is violated, both these violations
witness one and the same form of non-locality. However, as mentioned before, the mapping relies
on a non-local post-selection of data, which is a highly resourceful operation from the point of
view of non-locality. Therefore, although the connection between instrumental and Bell violations is
undoubtedly notorious, we believe it is fair to say that correlations violating instrumental inequalities
display an intrinsically different (and, in a sense, stronger) form of non-locality than those violating
Bell inequalities. Indeed the latter must be enhanced with non-local post-selections to reach the former.
In short, when viewed from a Bell’s scenario perspective, the violation of the instrumental inequality
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without active feed-forward of information is testing the incompatibility of quantum correlations with
a specific class of non-local hidden variable models (that include local models as a particular case),
thus clearly testing for a stronger form of non-locality. As for the experiment, adopting the collected
data of a CHSH scenario, we were able to obtain the violation extent of Bonet’s inequality and test the
CHSH inequality from the data collected within an instrumental process (i.e., with Alice affecting Bob’s
operator choice). The interest in the study of the instrumental scenario and its relation to Bell-like tests
originates from the possible application of this newly investigated quantum causal tool for quantum
information processing tasks, for example in cryptographic protocols or randomness generation.

4. Materials and Methods

Photon pairs were generated in a parametric down conversion source, composed by a nonlinear
crystal Beta-Barium Borate (BBO) of 2 mm-thick injected by a pulsed pump field with A = 392.5 nm.
After spectral filtering and walk-off compensation, photons of A = 785 nm are sent to the two
measurement stations A and B. The crystal used to implement active feed-forward is a LiNbO3
high-voltage micro Pockels Cell made by Shangai Institute of Ceramics with <1 ns risetime and a fast
electronic circuit transforming each Si-avalanche photodetection signal into a calibrated fast pulse in
the kV range needed to activate the Pockels Cell is fully described in [26,27]. To achieve the active
feed-forward of information, the photon sent to Bob’s station needs to be delayed, thus allowing the
measurement on the first qubit to be performed. The amount of delay was evaluated considering
the velocity of the signal transmission through a single mode fiber and the activation time of the
Pockels cell.
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Abbreviations

The following abbreviations are used in this manuscript:

CHSH Clauser-Horne-Shimony-Holt inequality
DAG  Directed Acyclic Graph

HWP  Half-wave plate

PBS Polarizing Beam Splitter

BBO Beta-Barium Borate

SPDC  Spontaneous Parametric Down-Conversion
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