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1. Introduction

Combining machine learning and quantum information ideas has been a fruitful line of research
in the last few years [1–3]. These new proposals can be divided in three main categories: using machine
learning for enhancing numerical methods and experimental techniques, devising quantum algorithms
to attack classical machine learning problems, and studying quantum generalisations of learning tasks.
In this contribution we address the latter category with an example of a supervised learning with
quantum data. For the sake of our discussion we use a very broad characterisation of quantum learning
tasks. First of all we consider a genuine quantum information theory setting, where an agent receives
a quantum source (of quantum or classical information), and can operate on it with any processing
device allowed by the rules of quantum mechanics. Secondly, we refer to tasks in which a machine
should be trained to perform a certain quantum operation and this training can be done through
quantum processing, that means with quantum training data and quantum operations.

In a classical supervised learning classification problem a machine is given a set of labelled
data, and uses this information to produce a classifier which can be used to assign a label to new
unlabelled data. In a probabilistic setting the data x ∈ X and the labels y ∈ Y are distributed
according to the probability distribution P : (X, Y)→ [0, 1] and a classifier is a conditional probability
distribution C(Y|X). For each P there exist an optimal classifier which minimises the probability of
misclassification, and a good learning algorithm is expected to give a good approximation of the
optimal classifier, at least when the training dataset becomes large. Even better, if the agent has some
prior information on the possible distributions one can define what is the optimal training and test
algorithm, which is the one with the lowest probability on average, averaging over all the possible
distributions assuming the prior.

Since classical learning tasks can be studied in a probabilistic formulation, a straightforward
generalisation of a learning task can be obtained by reinterpreting the task on quantum states rather
then probability distributions.

The analogy is clear and fundamental in quantum information theory, as most of the information
theoretic tasks that can be defined using probability distribution, like compression and communication,
can be generalised to quantum states.

2. The Model

On the basis of these observation, we consider the following problem: an agent is asked to
correctly guess the state of a qubit system X initialised with equal probability in the state ρ1 or ρ2,
bur ρ1 and ρ2 are unknown to the agent. Instead, he receives as a training set for the task a system A
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made of n qubits known to be in the state ρ1 and a system B of n other qubits known to be in the state
ρ2. The agent may have some kind of prior information on ρ1 and ρ2, like their purity or their overlap.
The question we ask is to find the two-outcome measurement M̂ ≡ {Π1, Π2} on the joint input made
of the training and test data which minimises the probability of misclassification error, calculated by
averaging over all the possible couples ρ1 and ρ2 according to the prior information. Since the input
state of the machine can be one of two alternatives τ1 = ρ⊗n

1 ⊗ ρ1 ⊗ ρ⊗n
2 (if X in ρ1) and

τ2 = ρ⊗n
1 ⊗ ρ2 ⊗ ρ⊗n

2 (if X in ρ2), the average probability reads

P(n)
err =

∫
dµ(ρ1, ρ2)

Tr[τ1Π̂2] + Tr[τ2Π̂1]

2
, (1)

where dµ(ρ1, ρ2) is a classical probability distribution on the states ρ1, ρ2, and encodes the prior
information of the agent. This problem can be translated in a binary state discrimination task for two
known effective states

α(n) ≡
∫

dµ(ρ1, ρ2)ρ
⊗n
1 ⊗ ρ1 ⊗ ρ⊗n

2 , β(n) ≡
∫

dµ(ρ1, ρ2)ρ
⊗n
1 ⊗ ρ2 ⊗ ρ⊗n

2 . (2)

Therefore, defined Θ ≡ α(n) − β(n), our figure of merit can be written as

P(n)
err,min =

1
2
− 1

4
‖Θ‖1 , (3)

with the symbol ‖ · · · ‖1 indicating the trace norm.
In the limit of n→ ∞ one expects that this quantity converges to the averages of the probability

of error for the Helstrom measurement for known ρ1 and ρ2, since the classical description of the
template states can be recovered exactly, for example using tomography. In fact this limit is always
a lower bound to the probability of error at finite n. We are interested in the finite size correction to
this value.

3. Results

Our contribution consists in calculating P(n)
err,min for a number of priors, generalising previuos

results [4,5]. As detailed in the preprint [6] we extensively use the symmetric and covariant properties
of Θ in order to reduce the problem to a simple analytic diagonalisation of 2 × 2 matrices. Moreover,
we perform asymptotic expansions of the sum of eigenvalues arising from Equation (3) in order to
obtain finite size corrections to the asymptotic limit. In particular we consider these cases:

(i) ρ1, ρ2 have assigned purities—the moduli of their Bloch vectors being respectively r1 and r2;
uniform prior on the Bloch vector’s directions,

P(n�1)
err,min =

1
2
− 1

24
(r1 + r2)

3 − |r1 − r2|3
r1r2

+
5

24 n
(r1 + r2)

3 + |r1 − r2|3

r2
1r2

2
− 1

24 n
(r1 + r2)

5 − |r1 − r2|5

r3
1r3

2
+ o

(
1
n

)
.

where the notation o
(

1
n

)
indicate terms that goes to zero faster than 1

n .

(ii) ρ1 and ρ2 are generically mixed qubit states, with a constant density Bloch sphere prior,

P(n�1)
err,min =

17
70

+
18

35n
+ o

(
1
n

)
. (4)
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(iii) ρ1 and ρ2 are pure and they have a fixed overlap Tr[ρ1ρ2] = sin2 θ
2 ; uniform prior on the global

orientation,

P(n�1)
err,min =

1
2

(
1− | cos θ

2 |
)
+ 3+cos θ

8
√

2
√

1+cos θ

1
n
+ 1−60 cos θ−5 cos 2θ

128
√

2(1+cos θ)3/2

1
n2 + o

(
1
n2

)
. (5)
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