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Abstract: Lee’s field-theoretical model describes the interaction between a qubit and a structured
bosonic field. We study the mathematical properties of the Hamiltonian of the single-excitation sector
of the theory, including a possibly “singular” qubit-field coupling (i.e., mediated by a non-square
integrable form factor). This result allows for a rigorous description of qubit-field interactions in
many physically interesting systems and may be extended to higher-excitation sectors of the theory.
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1. Introduction

Consider a two-level quantum system with ground and excitation energies equal to 0 and εa,
respectively, and a bosonic field with momentum space given by some measure space (X, dµ), where
the measure µ contains all information about the field structure. The Hamiltonians which describe the
qubit and the field are

Hqubit = εa |↑〉〈↑| , (1)

Hfield =
∫

X
ω(k) a†(k)a(k)dµ, (2)

with |↑〉, |↓〉 being the excited and ground states of the qubit, ω(k) being the boson dispersion
relation, and a(k), a†(k) being annihilation and creation operators satisfying the canonical commutation
relations [a(k), a†(k′)] = δ(k− k′) and [a(k), a(k′)] = [a†(k), a†(k′)] = 0. Lee’s interaction Hamiltonian
between the qubit and the field reads [1]

Vg =
∫

X

(
σ+ ⊗ g(k) a(k) + σ− ⊗ g(k) a†(k)

)
dµ, (3)

with g ∈ L2(X, dµ) being the form factor of the interaction, σ+ = |↑〉 〈↓| and σ− = |↓〉 〈↑|; its action is
represented in Figure 1. Lee’s Hamiltonian HL = Hqubit + Hfield + Vg preserves the total number of
excitation

N =
∫

X
a†(k)a(k)dµ + |↑〉〈↑| , (4)

and hence we can consider its restriction to any sector with a fixed number of excitation. We will focus
on the one-excitation sector, N = 1, whose generic normalised state can be written as

Ψ =

(
x
ξ

)
, x ∈ C, ξ ∈ L2(X, dµ), |x|2 +

∫
X
|ξ(k)|2 dµ = 1, (5)
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ξ being the boson wave function in the momentum space and x being the probability amplitude of the
excited state of the qubit. In particular, the vector

Ψ0 =

(
1
0

)
(6)

corresponds to the state in which the field is in the vacuum state and the qubit is excited.

↓ 0

↑ εa

σ+

a(k)

↓ 0

↑ εa

σ-

a
*(k)

Figure 1. Schematic representation of the allowed qubit-field interactions in the theory.

The restriction of the Lee Hamiltonian to this sector, first studied in [2], will be referred to as the
Friedrichs-Lee Hamiltonian HFL, and its action can be written in matrix form:

HFL =

(
εa 〈g|
g Ω

)
, (7)

with Ω being the multiplication operator by the function ω(k), Ωξ(k) = ω(k)ξ(k). The domain of
HFL is the set of all states (5) with boson wave function ξ in the domain D(Ω) of Ω, i.e., such that∫

X |ω(k) ξ(k)|2 dµ < ∞: physically, this means that states with finite variance of the full (qubit+field)
energy are all the states with finite variance of the field energy.

However, many cases of physical interest cannot be consistently described by a square-integrable
form factor, g ∈ L2(X, dµ). Two notable examples:

• No square-integrable form factor implementing an exponential decay of the survival probability of
Ψ0 exists, since Ψ0 is in the domain of the Hamiltonian [3,4]. An exponential decay can be formally
obtained e.g. in a one-dimensional setting (X, dµ) = (R, dk), with ω(k) = k and g(k) = 1, but
such a form factor obviously fails to be square-integrable;

• The standard choices of parameters in waveguide QED (see e.g., [5]) are

ω(k) =
√

k2 + m2, g(k) =
1

4
√

k2 + m2
, (8)

m being the effective photon mass; the form factor g fails to be square-integrable because of its
behaviour at large momenta |k| (UV divergence).

We will show that the model (7) can be extended in such a way that a proper class of singular
couplings can be included; besides, its spectrum and resonances can be completely characterised.
This accounts for a systematic study of bound states, scattering states and resonances in many
physical systems.

2. Singular Coupling

LetH = L2(X, dµ), and define, for any s > 0, the space of functions

H−s =

{
g : X → C

∣∣∣∣‖g‖−s :=
∫

X

|g(k)|2

(|ω(k)|+ 1)s dµ < ∞
}

; (9)
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{H−s}s≥0, each endowed with the norm ‖ · ‖−s, is known to be a “scale” of Banach spaces. i.e., with
H−s ⊃ H−s′ for every s > s′, every inclusion being dense with respect to the topology of the smaller
space (see e.g., [6]).

The case s = 2 is of particular interest for our purposes: indeed, given g ∈ H−2, we have
1

ω2+1 g ∈ H, and using this property we can prove that a generalized Friedrichs-Lee Hamiltonian can
be defined for a singular coupling g ∈ H−2 [7]:

Theorem 1. Let ε ∈ R, g ∈ H−2, and consider an operator Hg,ε with domain

D(Hg,ε) =

{(
x

ξ − x ω
ω2+1 g

) ∣∣∣∣ x ∈ C, ξ ∈ D(Ω)

}
(10)

such that

Hg,ε

(
x

ξ − x ω
ω2+1 g

)
=

(
εx + 〈g|ξ〉

ωξ + x 1
ω2+1 g

)
. (11)

Then Hg,ε is self-adjoint and, if g ∈ H, Hg,ε coincides with a Friedrichs-Lee Hamiltonian HFL in (7) with form
factor g and excitation energy

εa(g) = ε−
∫

X

ω(k)
ω(k)2 + 1

|g(k)|2 dµ. (12)

Moreover, if Q(Hg,ε) ⊃ D(Hg,ε) is the form domain of Hg,ε (i.e., the space of vectors with finite mean energy,
but possibly infinite variance) then the following characterisation holds:

• g ∈ H ⇐⇒ Ψ0 ∈ D(Hg,ε);
• g ∈ H−1 \ H ⇐⇒ Ψ0 ∈ Q(Hg,ε) \ D(Hg,ε);
• g ∈ H−2 \ H−1 ⇐⇒ Ψ0 /∈ Q(Hg,ε),

and, for g ∈ H−1, 〈Ψ0|Hg,εΨ0〉 = εa(g), with εa(g) as in Equation (12).

Notice that a domain change has been performed: in order to obtain a well-defined operator up
to g ∈ H−2, a “singular term” x ω

ω2+1 g—which is outside the domain D(Ω) whenever g /∈ H—must
be subtracted to the boson wave function ξ in (10). This also causes a change of the energy parameter
of the qubit from εa(g) to ε: physically, ε can be interpreted as the “dressed” excitation energy of
the qubit, as opposed to the “bare” one εa(g). It is important to note that, in the most singular case
g ∈ H−2 \ H−1, the qubit bare energy εa(g) is not well defined at all, since the integral in Equation (12)
diverges; this is due to the fact that εa(g) is the mean energy of Ψ0, which however diverges when
g ∈ H−2 \ H−1. These results are summarized in Table 1.

Table 1. Mean value and variance of the total energy of the state Ψ0 for the three classes of coupling
described in the theorem.

Coupling 〈Hg,ε〉Ψ0
〈H2

g,ε〉Ψ0
− 〈Hg,ε〉2Ψ0

g ∈ H εa(g) ‖g‖2

g ∈ H−1 \ H εa(g) ∞
g ∈ H−2 \ H−1 ∞ ∞

Moreover, one can prove that a singular coupling can be obtained as the limit of square-integrable
form factors [7]:

Theorem 2 (Singular coupling limit). For every singular (i.e., g /∈ H) Friedrichs-Lee Hamiltonian (11), there
is a sequence (gn)n∈N ⊂ H such that Hgn ,ε converges to Hg,ε in the norm resolvent sense. Conversely, given a
sequence (gn)n∈N ⊂ H and some g ∈ H−2, if ‖gn − g‖−2 → 0, then Hgn → Hg in the norm resolvent sense.
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Therefore, the absence of a well-defined bare excitation energy for the qubit can be physically
interpreted as the consequence of a renormalisation procedure, and ε as a renormalized energy. Indeed,
Equation (12) implies

εa(gn) = ε−
∫

X

ω(k)
ω(k)2 + 1

|gn(k)|2 dµ, (13)

but the integral diverges as n → ∞ whenever g ∈ H−2 \ H−1 and hence, being ε fixed, the bare
excitation energy εa(gn) diverges as well; in other words, if we keep the dressed excitation energy of
our model finite, the bare energy must diverge.

3. Conclusions

We have constructed a Hamiltonian model which allows for a rigorous description of the
single-excitation interaction between a qubit and a bosonic field, which includes a large class of
singular coupling, and we have classified the form factors by the energy properties of the vacuum
state Ψ0. The extension to singular couplings requires a domain change, which implies, on the physical
level, that the field energy of the boson component must have infinite variance, and in some case infinite
mean value, in order for the variance of the whole qubit-field system to be finite; an operator-theoretical
renormalisation procedure is also involved.

The model is self-consistent and its spectral properties can be studied in full generality [7];
the extension to an arbitrary number of qubits is straightforward and may be applied to many systems
of physical interest. Finally, the strategy of including singular couplings through a domain change and
a renormalisation of the excitation energies might be extended to Lee’s field theory, and pave the way
to a new approach to renormalisation of quantum field theories.
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