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Abstract: We introduce the notion of privacy in quantum estimation by considering an one-parameter
family of isometries taking one input into two output systems. It stems on the separate and adversarial
control of the two output systems as well as on the local minimization of the mean square error.
Applications to two-qubit unitaries (with one qubit in a fixed input state) are presented.
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1. Introduction

Parameter estimation is becoming important in quantum information processing which takes
place by quantum channel maps (see e.g., [1]). It is well known that any quantum channel admits
an isometry as a dilation [2]. Hence we can conceive the estimation of a family of isometries through
quantum channels. This models a realistic situation where not all information concerning the measured
systems is accessible. More precisely, given a one parameter family of isometries {VA→BF

α }, we consider
the parameter α’s estimation by accessing only the system B. This amounts to use the quantum channel
between A and B of which VA→BF

α represents the Stinespring dilation [2].
In communication theory channels are also characterized by their privacy [3]. This notion captures

the ability to convey more information through the channel than the one that is lost into environment.
To link this notion with estimation we assume system F is under control of a malicious being. Then
the problem we are facing with becomes of what are the conditions under which a legitimate user
controlling the B system (besides A ones) can perform a better estimation. We address this issue by
minimizing mean square error.

2. Private Quantum Estimation

Consider a family of isometries Vα : HA → HB ⊗HF, which is parametrized by α ∈ I ⊂ R.
Assume parameter α has an a priori probability distribution function p(α) over I , the probe system A
is prepared in the state ρA. Then the output on B reads

ρB(α) = TrF

(
VαρAV†

α

)
=: N (ρA). (1)

We perform measurement on this state, and estimate of the unknown parameter α using the
measurement outcome. As goodness of this process, we consider average quadratic cost function:

C̄B :=
∫
I

p(α)Tr
[
ρB(α)

(
ŜB − αI

)2
]

dα, (2)
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where ŜB is the measurement operator used to estimate α. The best of such operator is obtained by
minimizing C̄B. Personik’s theorem [4] provided the solution to this optimization problem through the
following operator equation

W(0)
B ŜB + ŜBW(0)

B = 2W(1)
B , (3)

where W(0)
B :=

∫
I p(α)ρB(α)dα and W(1)

B :=
∫
I α p(α)ρB(α)dα. On the other hand we can consider

the state emerging from the channel complementary to N in Equation (1), namely

ρF(α) = TrB

(
VαρAV†

α

)
=: Ñ (ρ). (4)

If this is controlled by an adversary, a strategy similar to the above can be employed to estimate α and
leading to C̄F

min with a suitable optimal measurement ŜF.
By considering the system B (as well as A) hold by a legitimate user, we define the privacy of

estimation through the difference between the minimum of the average quadratic cost functions

Pe := max
{

C̄F
min − C̄B

min, 0
}

. (5)

Whenever it results positive, it means that C̄B
min < C̄F

min and hence B can better estimate α than F. This
definition of the privacy assumes that the adversary can control the system F and at the same time
has information about the input state. A weaker notion of privacy can be introduced by assuming the
adversary with no information about the input state. This amounts to consider C̄F

min in (5) averaged
overall possible input states.

3. Application to Two-Qubit Unitaries

For a two-qubit system we consider Vα = Uα|0〉E, where Uα : HA ⊗HE → HB ⊗HF (HA =

HE = HB = HF ' C2) are entangling unitaries that can be parameterized as [5]:

U(αx, αy, αz) = exp
[
− i

2
(
αxσx ⊗ σx + αyσy ⊗ σy + αzσz ⊗ σz

)]
, (6)

with the parameter space

S =
{
(αx, αy, αz) :

π

2
≥ αx ≥ αy ≥ αz ≥ 0

}
. (7)

The state in the system A (probe’s state) will be generically considered as

ρA =
(√

x |0〉+ eiϕ√1− x |1〉
) (√

x 〈0|+ e−iϕ√1− x 〈1|
)

, (8)

with x ∈ [0, 1] and ϕ ∈ [0, 2π]. Below we will consider the estimation of a single parameter be either
αx or αy or αz, by assuming the values of the other two to be known. To this end the states ρB of
Equation (1) and ρF of Equation (4) can be readily calculated. There, the parameter ϕ appears as added
to αz. Thus it has no effect in the estimation of the latter. But it can affect the estimation of αx and αy.

(i) Estimation of αz. We took 325 points in the region 0 ≤ αy ≤ αx ≤ π
2 and for each point we

estimated αz through ρB and independently through ρF. This is done by also optimizing the
privacy (5) over the probe’s state, i.e., by considering

Pe(αx, αy) = max
{

max
x

[
C̄F

min(αx, αy, x)− C̄B
min(αx, αy, x)

]
, 0
}

, (9)

whose contour plot is reported in Figure 1.



Proceedings 2019, 12, 13 3 of 5

Figure 1. Contour plot of the privacy Pe for estimating αz.

On the line αx + αy = π
2 we have C̄B

min = C̄F
min and this divides the region 0 ≤ αy ≤ αx ≤ π

2
into two triangles. Only in the lower one the estimation is private (in the upper one C̄F

min results
smaller than C̄B

min). Furthermore there is a specific and small region where the privacy increases
with respect to the background.

(ii) Estimation of αy. In this case we took 325 points in the region 0 ≤ αz ≤ αx ≤ π
2 , and for each

point we estimated αy through ρB and independently through ρF likewise the previous case.
Then we evaluated the privacy

Pe(αx, αz) = max
{

max
x,ϕ

[
C̄F

min(αx, αz, x, ϕ)− C̄B
min(αx, αz, x, ϕ)

]
, 0
}

, (10)

whose contour plot is reported in Figure 2. Notice that although C̄B
min can be made zero by

choosing αz = αx
1, this does not give the maximum privacy since in such a case also C̄F

min turns
out to be zero. The maximum privacy is obtained when αz decrease to 0 and αx increase to π/2.

Figure 2. Contour plot of the privacy Pe for estimating αy.

1 This choice by virtue of (7) forces αy to be exactly determined.
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(iii) Estimation of αx. In this last case we took 325 points in the region 0 ≤ αz ≤ αy ≤ π
2 and for each

point we estimated αx through ρB and independently through ρF. We actually computed

Pe(αy, αz) = max
{

max
x,ϕ

[
C̄F

min(αy, αz, x, ϕ)− C̄B
min(αy, αz, x, ϕ)

]
, 0
}

, (11)

whose contour plot is shown in Figure 3.

Figure 3. Contour plot of the privacy Pe for estimating αx.

Comparing the three cases we can see that the highest privacy is achievable for the estimation
of αy, while it decreases by one order of magnitude for αx and by a further order of magnitude for
αz. In this latter case the privacy is also not guaranteed in half of the parameter space. It is worth
saying that Pe(αx, αy) is not affected by the maximization over ϕ, while the quantities Pe(αx, αz) and
Pe(αy, αz) are, but in a different way. In particular the former is almost insensible to ϕ, instead the
latter strongly depends on it.

4. Conclusion

In conclusion we have considered the single parameter estimation of isometries representing
Stinespring dilations of quantum channels, in which the environment is under control of an adversary
and the goal is to allow the legitimate user of the channels to outperform the estimation. The optimal
strategy has been found by minimizing the average quadratic cost. Applications to two-qubit unitaries
show that the largest privacy is obtainable when estimating αy, i.e., the parameter in front of the
generator σy ⊗ σy. The developed approach can be extended to conceive the possibility of separate but
cooperative control (instead of adversarial) of the two output systems [6].
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