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Abstract: We argue that the inferred ratio of shear viscosity to entropy density of the quark-gluon
plasma, η/s ∼< 0.5 near the deconfinement temperature Tc, can be understood from perturbative QCD.
To rebut opposite views, we first show that the existing leading order result should not be expanded
in logarithms. After then settling the question of scale for the running coupling, we establish a
temperature dependence of η/s which agrees well with constraints from hydrodynamics.
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Experiments at the RHIC and LHC have provided substantial evidence that the quark-gluon
plasma (QGP) behaves as an almost ideal fluid [1], with an upper bound on the ratio of shear viscosity
to entropy density, η/s ∼< 0.5. While this remarkably low value clearly indicates a ‘strongly coupled’
system, it remains a theoretical challenge to understand better why it is so low.

One popular approach to this question is via the AdS/CFT correspondence [2]. The conjectured
lower limit η/s ≥ 1/(4π) from supersymmetric Yang-Mills theories does compare favorably with the
observations, but a rigorous connection to real-world QCD is lacking. First attempts to compute η

by lattice QCD corroborate small values [3], but are hampered by the difficulties of applying a static
approach for a non-equilibrium observables. On the other hand, there is a widespread belief that QCD
perturbation theory fails to explain η/s ∼< 0.5 . This is the perception we will scrutinise here.

It appears to be largely based on the next-to-leading log (NLL) formula

ηNLL(α) = bT3/[α2 ln(c/α)] , (1)

where T is the temperature and α the coupling strength. The coefficients b and c were extracted from
the leading order (LO) result ηLO computed numerically in a QCD effective kinetic framework [4]. In the
quenched limit (nf = 0 quark flavors), the case we will consider mostly for argument’s sake, b ≈ 0.34
and c ≈ 0.61 . The viscosity should decrease for stronger interactions, which is described by (1) only
for α < α = c/

√
e, at which point ηNLL(α) has a minimum. That minimum turns out to be close to the

free entropy s0 = (16 + 21
2 nf )

4π2

90 T3, see Figure 1. Thus (1) is incompatible with the bound η/s ∼< 0.5 .

Proceedings 2019, 10, 7; doi:10.3390/proceedings2019010007 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0003-1283-3264
https://orcid.org/0000-0002-7186-2607
http://www.mdpi.com/2504-3900/10/1/7?type=check_update&version=1
http://dx.doi.org/10.3390/proceedings2019010007
http://www.mdpi.com/journal/proceedings


Proceedings 2019, 10, 7 2 of 5

η
/T

3
α

LO

Eq. (5)

NLL

s0/T
3

slatt/T
3 @ T = 1.2Tc

0.03 0.1 0.3 1

1

10

102

Figure 1. The viscosity, for nf = 0, to LO and NLL accuracy, and from our estimate (5). To illustrate that
ηNLL cannot explain η/s ∼< 0.5 (but ηLO may), we also show the constraint for the entropy, 4T3 ≤ s ≤ s0

for T > 1.2Tc (see main text). Near the deconfinement temperature Tc the entropy of the QGP is notably
smaller than s0 .

We view the minimum of ηNLL(α) as a precursor to its singularity at α = c (marking the
break-down of the NLL approximation) – which an elementary argument reveals to be unphysical:
In kinetic theory we may estimate η ≈ 1

3 np̄λ , from the density n of particles that can transport a
typical momentum p̄ over a distance λ. For binary interactions of relativistic particles λ = (nσtr)−1,
where σtr(s) =

∫ 0
−s dt ( 1

2 |t|/s) dσ/dt is the transport cross section in terms of Mandelstam variables.
(Here s is the centre-of-mass energy squared.) Although the ‘transport weight’ 1

2 |t|/s = 1− cos θ

suppresses the influence of small-angle scatterings that prevail in gauge theories, σtr would still
diverge logarithmically at tree-level due to the t-channel gluon exchange term in dσtree/dt ∝
α2[−us/t2− ts/u2− ut/s2 + 3]/s2. Since this would imply zero viscosity for any value of the coupling,
it is a necessity to go beyond tree-level. In a hot QGP, the exchanged gluon acquires a self-energy of the
order µ2 ∼ αT2 and is thus screened, schematically dσscr/dt ∼ α2/(t− µ2)2 for small t. The typical
invariant energy s ∼ T2 is much larger than µ2 for α� 1, thus screening can be mimicked by a cut-off
on dσtree/dt,

σscr
tr → σcut

tr ∼
∫ −µ2

−T2
dt
|t|
T2

α2

t2 =
α2

T2 ln α−1 + O(α2) . (2)

This reproduces (with p̄ ∼ T) the parametric α-dependence of (1), but also shows that the singularity
of ηNLL(α) is related to coinciding integration bounds in (2). Thus the reason why ηNLL cannot be
extrapolated to larger α has to do with kinematic simplifications that become illegitimate.

To validate this insight for QCD, the viscosity has to be calculated from the energy-momentum
tensor of the particle distribution f (p, x, t) governed by the Boltzmann equation, (∂t + v∇) f = C[ f ],
when set up for the case of a collective small-gradient flow u that drives f slightly out of local
equilibrium. As detailed in Refs. [4,5], η can be obtained by extremizing a functional constructed from
the collision term C[ f ]. The essence of this technical calculation is [6]

η

T3 '
[ ∫ ∞

0
ds sP(s)

∫ 0

−s
dt
|t|
2s

dσ

dt

]−1
+ . . . , (3)

if dσ/dt depends only on the Mandelstam variables, and omitting terms sub-leading to the dominant
small-angle binary scattering contributions. With σtr factorised from a positive weight P(s) ,
the convolution (3) specifies more rigorously the ‘typical’ momentum p̄ . We now discuss why the
expansion in α is ill-defined. To that end, we argue on the basis of (3) applied to the simple model
dσscr/dt which, now with correct kinematic limits, amends (2) to

σscr
tr (s) ∝

∫ 0

−s
dt
|t|
s

α2

(t− µ2)2 =
α2

s
g(a) . (4)



Proceedings 2019, 10, 7 3 of 5

Here g(a) = ln 1+a
a − 1/(1 + a) is a monotonously decreasing, positive function of a = µ2/s . Its ‘NLL’

approximation, g = ln a−1 − 1 + O(a), becomes obviously unphysical for a > 1/e, leading to the
same issues as in (1) and (2). We note first that this problem cannot be cured by higher order terms
in the expansion due to the convergence radius, a = 1, set by the pole at t = µ2 (off the physical
sheet) in dσscr/dt. This feature of a finite radius of convergence will carry over to QCD. What is more,
expanding σscr

tr in µ2/s ∝ α before convoluting it in (3) with P(s) is forbidden: The coefficients of αn

(the negative moments of P) are IR-divergent, with increasing severity, since P(0) > 0 [6].
Unless α � c, estimates of η cannot be based on the NLL formula (1) but require at least

the unexpanded LO result. As a function of the coupling, ηLO(α) is monotonously approaching
zero, which begs the question for ‘the’ value of α. To back up that perturbative QCD can indeed
explain η/s ∼< 0.5, let us point out that ηLO(α) is fairly well reproduced by approximation (3) and (4).
Without needing further details of P(s) we can simply rewrite the convolution in (3) using the mean
value theorem,

η/T3 ' b/[α2g(ā)] . (5)

Here we sidestepped solving the Boltzmann equation for f and infer that 1/(2
∫

dsP(s)) = b since (5)
has to reproduce (1) at LL accuracy. Furthermore, ā = µ2/s̄ = κ · α could be determined from a
‘log moment’ of P(s), but we will rather adjust it to match c in (1), viz. κ → (ce)−1. To quantify the
uncertainty of this artifice, we vary κ by factors 2±1/2 in Figure 1, which confirms a good agreement
of (5) with ηLO(α) even for α ∼> α (where the NLL result becomes qualitatively incorrect, as discussed).

Figure 1 also depicts the rigorous bound s > 4T3 on the entropy for T > 1.2Tc known from
lattice calculations [7], to affirm that ηNLL cannot explain η/s ∼< 0.5. For α large enough ηLO could be
compatible with η/s ∼< 0.5 – which brings us back to the task of specifying α at a given T. A common
prescription is to take α as the running coupling

α(Q2) = [β0 ln(|Q2|/Λ2)]−1 (6)

(where β0 = (11− 2
3 nf )/(4π) and Λ is the QCD parameter) at a ‘typical thermal scale’, like the lowest

Matsubara energy QT = 2πT. However, quantifying the coupling should be based on firmer grounds.
Having to specify the coupling a posteriori arises because in Ref. [4] α is treated as if it was constant.

Imposing then QT as the relevant scale seems counterintuitive given the importance of a range of
momenta, parametrically [µ, T]. As put forward early [8] but rarely taken into account in finite-T
QCD, the relevant scale of the running coupling in, say, t-channel scattering should be t . (Choosing a
different scale Q2 gives correction terms α(Q2) log(Q2/t) which are higher order in α(·) but can be
large.) This rectifies (2) to

σcut
tr ∼

∫ −µ2

−T2
dt
|t|
T2

α2(t)
t2 =

α(µ2)α(T2)

T2 ln
T2

µ2 ,

hence the overall factor α−2 in (1) is to be understood as a geometric mean of the running coupling at
T ∼ QT and at the soft screening scale µ.

Running of the coupling emerges from fluctuations, be they in vacuum or in medium. Thus for
observables that require thermal screening, the ‘scale setting’ for α(Q2) is unambiguous. For this,
several types of radiative corrections are needed but only the gluon self-energy Π = Πvac + ΠT

contributes in Coulomb gauge due to its Abelian-like Ward identities [9]. This noteworthy feature
simplifies our argument. In Coulomb gauge it is evident that dressing e.g., a t-channel Born amplitude
∼ α/t with Πvac(Q) = αβ0

[
ε−1 + ln(−Q2/L2)

]
Q2 (in dimensional regularization with scale L,

and Q2 = t) gives the renormalisedMvac ∼ α(t)/t with the coupling (6) at the scale t. At T > 0,
the self-energy receives the finite contribution ΠT = α ϑ, where ϑ ∼ T2 depends on q0 and q. Then the
renormalised amplitude becomesM∼ α(Q2)/(Q2 − α(Q2) ϑ) [10]. This dependence of the running
coupling on the virtuality carries over to the other scattering channels and then to dσ/dt ∼ |∑Mi|2.
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Now leaving behind the ‘toy’ models discussed, this analysis allows us to re-instate running
in the fixed-coupling calculation [4], where IR sensitive terms in dσtree/dt were screened with hard
thermal loop (HTL) insertions, replacing e.g.,

− α2 (us/t2)→ |αD?
µν(Q)Yµν|2 + 1

4 α2 . (7)

Here Yµν = (P1 − 1
2 Q)µ(P2 +

1
2 Q)ν, and D?

µν = (D−1
0 − ΠT

? )
−1
µν is the Coulomb HTL propagator.

The matrix element αD? separates into transverse and longitudinal contributions (i = {t, `}),
with D?

i = 1/(Q2 − αϑ?
i ). Promoting α to be Q2-dependent gives the renormalised amplitude

αD?
i (Q)→ α(Q2)/[Q2 − α(Q2) ϑ?

i ] . (8)

The HTL screening in (7) and (8) is justified for soft momenta |Q2| ∼< T2 (which is sufficient for LO
accuracy). To probe the sensitivity of higher order contributions, we omit screening for |Q2| > |t?| and
then vary |t?| ∈ [ 1

2 , 2]T2 . Figure 2 shows a factor of two uncertainty of η for relevant T, which makes
our estimate based on the scale setting and omission of inelastic scatterings sufficiently robust [6].

In light of the overbearing sensitivity of η on t? we set Λ → Tc for the viscosity shown in
Figure 2, normalised by the interacting entropy from lattice QCD calculations [7]. For nf = {0, 3}
our results are compatible with existing lattice calculations [3] and also recent constraints from
hydrodynamics [11]. A mild increase in the ratio reflects the QCD feature of an effective coupling which
weakens logarithmically. Figure 2 also illustrates that the LO result, with α(Q2

T) still overestimates η/s .
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Figure 2. The viscosity in units of the entropy [7]; full lines show our result with running coupling,
the bands give the uncertainty from t? ∈ [ 1

2 , 2]T2, see text. The left panel, for the quenched limit,
shows lattice results [3], and by the dashed line the LO result with QT = 2πT in running coupling.
Overlayed on the right, for nf = 3 , are estimates from hydrodynamics [11]. Hatched region:
η/s ≤ 1/(4π).

We have demonstrated that many estimates for η are misleading for two reasons, namely due to
compromising the fixed-α LO (resummed) result by another (log) expansion and an ad hoc choice for the
value of α. In fact, both issues are closely related: Resummation accounts for thermal screening which
results from loop corrections to tree level amplitudes – as does running coupling. Treating them on an
equal footing, we arrive at a consistent position regarding a long-standing question: The reckoned
constraint η ∼< 0.5 s for the QGP produced in heavy-ion collisions can be understood on the basis of the
LO viscosity – rather than being a genuinely non-perturbative effect.

Acknowledgments: Greg Jackson was supported by the Swiss National Science Foundation (SNF) under grant
200020-168988.



Proceedings 2019, 10, 7 5 of 5

References

1. Aamodt, K.; Quintana, A.A.; Adamova, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agocs, A.G.;
Agostinelli, A.; Salazar, S.A.; Ahammed, Z.; et al. Rapidity and transverse momentum dependence of
inclusive J/ψ production in pp collisions at

√
s = 7 TeV. Phys. Lett. B 2011, 704, 442. Adare, A.; Afanasiev, S.;

Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Al-Jamel, A.; Aoki, K.; Aphecetche, L.;
et al. Heavy Quark Production in p + p and Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at
√

sNN = 200 GeV. Phys. Rev. C 2011, 84, 044905.
2. Kovtun, P.; Son, D.T.; Starinets, A.O. Viscosity in strongly interacting quantum field theories from black hole

physics. Phys. Rev. Lett. 2005, 94, 111601.
3. Meyer, H.B. A Calculation of the bulk viscosity in SU(3) gluodynamics. Phys. Rev. Lett. 2008, 100,

162001; Transport properties of the quark-gluon plasma from lattice QCD. Nucl. Phys. A 2009, 830, 641C;
Mages, S.W.; Borsányi, S.; Fodor, Z.; Schäfer, A.; Szabó, K. Shear Viscosity from Lattice QCD. PoS LATTICE
2015, 2014, 232; Astrakhantsev, N.; Braguta, V.; Kotov, A. Temperature dependence of shear viscosity of
SU(3)–gluodynamics within lattice simulation. JHEP 2017, 1704, 101.

4. Arnold, P.B.; Moore, G.D.; Yaffe, L.G. Transport coefficients in high temperature gauge theories. 1. Leading
log results. JHEP 2000, 0011, 001; Transport coefficients in high temperature gauge theories. 2. Beyond
leading log. ibid. 2003, 0305, 051.

5. Baym, G.; Monien, H.; Pethick, C.; Ravenhall, D. Transverse Interactions and Transport in Relativistic
Quark-Gluon and Electromagnetic Plasmas. Phys. Rev. Lett. 1990, 64, 1867.

6. Jackson, G.; Peshier, A. Re-running the QCD shear viscosity. J. Phys. G 2018, 45, 095001 .
7. Borsanyi, S.; Endrodi, G.; Fodor, Z.; Katz, S.D.; Szabo, K.K. Precision SU(3) lattice thermodynamics for a

large temperature range. JHEP 2012, 1207, 056; Full result for the QCD equation of state with 2+1 flavors.
Phys. Lett. B 2014, 730, 99.

8. Cutler, R.; Sivers, D.W. Quantum Chromodynamic Gluon Contributions to Large-pT Reactions. Phys. Rev. D
1978, 17, 196, doi:10.1103/PhysRevD.17.196.

9. Grozin, A. Asymptotic freedom: History and interpretation. arXiv 2008, arXiv:0803.2589.
10. Peshier, A. The QCD collisional energy loss revised. Phys. Rev. Lett. 2006, 97, 212301, doi:10.1103/

PhysRevLett.97.212301
11. Bernhard, J.E.; Moreland, J.S.; Bass, S.A.; Liu, J.; Heinz, U. Applying Bayesian parameter estimation to

relativistic heavy-ion collisions: Simultaneous characterization of the initial state and quark-gluon plasma
medium. Phys. Rev. C 2016, 94, 024907, doi:10.1103/PhysRevC.94.024907

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	References

