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Abstract: It has been shown that holographic black holes, constructed to mimic the equation of state
of QCD computed on the lattice at finite temperature and zero density, display critical behavior at
large baryonic chemical potential. In this proceedings, we discuss the mapping of holographic black
holes into the QCD phase diagram and the emergence of the critical point and the first order phase
transition line.

Keywords: QCD phase diagram; critical point; holography; black hole engineering; quark
gluon plasma

1. Introduction

The study of the non perturbative QCD phenomena at finite temperature (T) has been possible
over the last years through calculations performed on the lattice. Due to the well known sign
problem, those calculations can only be done at zero (or imaginary) baryonic chemical potential
(µB). The extension of those calculations to finite µB is currently limited to values of µB/T < 2 [1,2].
In this density regime, lattice QCD has found a rapid crossover transition between a gas of hadrons
and a deconfined quark gluon plasma phase [3,4]. Whether or not this crossover evolves into a critical
point where a first order phase transition begins is an important question that cannot be addressed at
the moment by first principle calculations. Nevertheless, the existence and location of the critical point
are of considerable interest to experiments probing unprecedented high values of µB where the critical
point may be found, especially to the second run of the Beam Energy Scan at BNL, and to the future
Facility for Antiproton and Ion Research at GSI.

In the absence of first principle calculations for higher values of µB, alternative approaches should
be explored if one wants to relate heavy ion experiments to the phases of QCD and the critical point.
One of those approaches is the holographic duality introduced in Ref. [5]. This method was used
in Ref. [6] to construct five-dimensional black holes solutions with thermodynamic properties that
mimic the equation of state calculated on the lattice at µB = 0. The model was extended to include
a baryonic charge in Refs. [7,8] where it was shown that such holographic constructions can display
a critical point at large µB. Having a non zero bulk viscosity, these non-conformal models play an
important role in hydrodynamic simulations, and they have been used to compute high order baryonic
susceptibilities [9–11], and transport coefficients [12–15].

Following our work in Ref. [9], in this contribution we discuss how the holographic black
hole solutions map into the QCD phase diagram and produce a critical point and a first order
phase transition.
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2. Black Hole Model

The action of the holographic model is given by [7,8]

S =
1

16πG5

∫
dx5√−g

[
R− 1

2
(∂M φ)2 −V(φ)− 1

4
f (φ)F2

MN

]
. (1)

where G5 is the gravitational coupling,R is the Ricci scalar, and φ is a dilaton field which couple to
the metric gµν, and to a Maxwell dilaton field AN defining an Einstein-Maxwell-dilaton model (EMD).
The conserved baryonic charge is taken into account by including the vector field AN in the action in
the bulk. The non-conformal behavior of the model is controlled by a scalar potential V(φ), and the
coupling between AN and φ by the function f (φ). Those two functions are engineered to reproduce
the entropy density and the second baryon susceptibility at µB = 0 from the lattice, respectively (see
Ref. [9] for details).

The charged black hole backgrounds, spatially isotropic and translationally invariant, that we are
considering can be described by the following ansatz for the EMD fields [7]

ds2 = e2A(r)
[
−h(r)dt2 + d~x2

]
+

e2B(r)dr2

h(r)
. (2)

The EMD model produces four coupled second order differential equations of motion given in
terms of the fields {A, h, φ, Φ}, where A = A(r), h = h(r), φ = φ(r), and A = Φ(r)dt depend only
on the holographic variable r. A black hole solution may be obtained by integrating the equations
of motion from a near-horizon to a far-horizon where, according to the holographic dictionary, the
thermodynamics of the 4-dimensional gauge theory is computed. Therefore, to solve the equations of
motion, it is necessary to define a boundary condition at the near-horizon of the EMD fields. As done
in Ref. [7–9], this boundary is parametrized in terms of two initial values (φ0, Φ1), which define the
black hole solution. In the next session, we discuss how these two initial conditions translate into a
point in the QCD phase diagram.

3. Discussion

The two initial conditions defining a holographic black hole are the value of the field at the
near-horizon, φ0, and the value of the electric field, Φ1, in the holographic direction r. Therefore,
Φ1 = 0 corresponds to the T axis (µB = 0) as shown on the left panel of Figure 1. To populate the QCD
phase diagram with black hole solutions, we fix φ0 to produce equally spaced intervals of T. Then,
we vary Φ1 from zero to the maximum bound imposed by requiring an asymptotically AdS black hole,
Φ1(max)=

√
−2V(φ0)/ f (φ0) [7]. The right panel in Figure 1 shows the lines of constant φ0 bending

down as they evolve in the µB direction. We can distinguish between three kinds of lines: the dotted
lines that do not cross each other; the dashed lines in the middle of the plane that cross some of the
dotted lines; and the solid lines on the top of the plane that cross some of the dotted and dashed lines.
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Figure 1. Mapping of the initial values of the black holes (φ0, Φ1) to the QCD phase diagram (T, µB).
The left panel shows the dependence on T of φ0 when Φ1 = 0. The right panel shows the lines of
constant φ0 evolving in the µB direction as Φ1 increases.
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The crossing of the lines creates a region of the phase diagram with multi-solutions that begins on
the point (Tc = 89 MeV, µc

B = 724 MeV), and extends to lower T and higher µB. The stable solution in
this region is required to minimize the free energy (or maximize the entropy), and also to be locally
stable under small fluctuations. Thermodynamic stability requires the entropy (S), baryon number (N),
specific heat at constant volume (Cv = T(∂S/∂T)v), and the quark susceptibility (χ2 = (∂N/∂µB)T),
to be positive definite. Figure 2 shows S and N as functions of T for three different values of µB: one
below µc

B (µB = 700) and two above µc
B (µB = 750 and µB = 800). This figure also shows, with a thick

red line, the values of S and N that are thermodynamically unstable. The unstable regions belong to
the dashed lines in the phase diagram in Figure 1, which is the plane that is bent in the middle between
the dotted and the solid lines. We also notice that S is higher in the dotted lines than in the dashed
lines at fixed µB. Therefore, from the two remaining solutions, the one that maximizes the entropy will
be the one with higher value of φ0.
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Figure 2. Entropy (left) panel and Baryon number (right) panel as functions of T for µB = 700 MeV,
µB = 750 MeV, and µB = 800 MeV. The thick red lines indicate thermodynamically unstable points.

4. Conclusions

We used a holographic approach to construct black hole solutions parametrized by two initial
values (φ0, Φ1), and discuss how the black hole solutions map into the QCD phase diagram.
We showed that the lines of constant φ0 bend to lower values of T as Φ1 increases. The bending
of the lines produces an overlap of black hole solutions. The overlapping region begins at the point
(Tc = 89 MeV, µc

B = 724 MeV) and extends to lower values of T and higher values of µB forming a
bent plane with three different black hole solutions for a single (T, µB) point. In this region, we found
that the solution with the intermediate value of φ0 (dashed lines on the right panel in Figure 1) is
thermodynamically unstable. From the remaining two solutions, the one with higher φ0 has higher
entropy. Therefore, the system will maximize the entropy by moving from the lower plane (dotted
lines on the right panel in Figure 1) to the higher plane (solid lines on the right panel in Figure 1) when
those two planes overlap developing a first order phase transition line along the boundary of those
two regions. The point where the overlapping of the planes begins (Tc = 89 MeV, µc

B = 724 MeV) will
identify the location of the QCD critical point in the holographic model.
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