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Abstract: We have extended the hadron resonance gas (HRG) model by including the effect of both
attractive and repulsive interaction in the scattering matrix (S-matrix) formalism. The attractive part of
the interaction is calculated using K-matrix formalism while the repulsive part is included by fitting to
experimental phase shifts. We have calculated various thermodynamics quantities like pressure, energy
density, entropy density etc. A good agreement between our calculations and the hadronic phase of the
lattice QCD (LQCD) simulations is observed. We have also calculated fluctuations and correlations for
various conserved charges like baryon, strangeness and electric charge. In the present model, χ2

B, χ11
BS and

CBS agree well with the LQCD data.
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1. Introduction

The primary goals of experiments with heavy-ion beams at ultrarelativistic energies is to study the
possible formation of a new form of matter known as the quark-gluon plasma (QGP) and the possible
occurrence of a phase transition between the QGP and hadronic phases. An approach to study the
properties of hadronic phase formed by hadronization of the QGP is through a statistical thermal model
of a gas of hadrons called the hadron resonance gas (HRG) model [1,2]. The ideal HRG model assumes
that the thermal system consists of point like non interacting hadrons and resonances. There are several
approaches to include interaction in the HRG model. For example, in the excluded volume HRG (EVHRG)
model, van der Waals (VDW) type repulsive interaction is introduced by considering the geometrical sizes
of the hadrons [3]. Both attractive and repulsive van der Waals interactions have also been introduced
in the VDWHRG model [4]. However, these models introduces more parameters to include interactions.
In this present work we have included interaction using the S-matrix approach without introducing any
additional parameters.
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2. Formalism

The most natural way to incorporate interaction among a gas of hadrons is to use relativistic virial
expansion introduced in Ref. [5]. In this approach, the total pressure of the system is the sum of
non-interacting (ideal) and interacting parts, i.e,

P = Pid +Pint . (1)

We consider baryon and meson octets as the stable hadrons. Non interacting stable hadrons contribute
to the ideal part of the pressure whereas two body elastic scattering between any two stable hadrons gives
the interacting part of the pressure. The non-interacting part of the pressure in a grand canonical ensemble
can be written as

Pid = ∑
h

gh
2π2 m2

hT2
∞

∑
j=1

(±1)j−1(zj/j2)K2(jβmh), (2)

where sum is over all the stable hadrons considered in this work, mh, gh are the mass and degeneracy of
the hadron, T is the temperature of the system, K2 is the modified Bessel function of second kind, β is the
inverse of T. In the last expression z = eβµh is the fugacity where µh is the chemical potential of hth hadron
and is defined as µh = BhµB + ShµS + QhµQ where Bh, Sh, Qh are baryon number, strangeness and electric
charge and µ’s are the respective chemical potentials. The interacting part of the pressure can be written
as [6]

Pint =
z1z2

2π3β2

∫ ∞

M
dεε2K2(βε)∑

I,L

′
gI,L

∂δI,L(ε)

∂ε
, (3)

where z1 and z2 are fugacities of two species, δI,L is the phase shift, I and L denote isospin and angular
momentum respectively, ε is the center of mass energy. The factor gI,L = (2I + 1)(2L + 1) is the degeneracy
factor, M is the invariant mass of the interacting pair at threshold. The prime over the summation sign
denotes that for given L the sum over I is restricted to values consistent with statistics. For the attractive
(repulsive) interactions derivative of phase shifts are positive (negative).

Once we know the pressure, we can calculate different thermodynamic quantities. The susceptibilities
of conserved charges can be calculated as

χ
xyz
BSQ =

∂x+y+z(P/T4)

∂(µB/T)x∂(µS/T)y∂(µQ/T)z , (4)

where x, y and z are the order of derivatives of the quantities B, S and Q.

2.1. Attractive Interaction Using K-Matrix Formalism

A theoretical way of calculating the attractive phase shifts is to use the K-matrix formalism.
The inverse of K-matrix is defined as K−1 = T−1 + iI where I is the unit matrix. The transfer matrix T
is related to the S-matrix by the relation S = I+ 2iT. The K-matrix formalism preserves the unitarity of
S-matrix and neatly handles multiple resonances [7]. In addition to that, widths of the resonances are
handled naturally in the above formalism. For overlapping resonances the K-matrix gives a more accurate
description of the phase shifts than the Breit-Wigner parametrization. In Ref. [8] the K-matrix formalism
was used to study an interacting gas of hadrons and it was extended further in Ref. [9].
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The resonances, contributing to the process ab→ R→ ab, appear as a sum of poles in the K-matrix,

K I,L
R→ab = ∑

R(I,L)

mRΓR→ab(ε)

m2
R − ε2

, (5)

where a, b are hadrons, mR, ΓR→ab are the mass and partial width of the resonance. We have considered
energy dependent partial widths ΓR→ab(ε) [7], i.e., the total width times the branching ratio for the channel
R → ab. The sum in the last expression is restricted to the addition of resonances for a given angular
momentum L and isospin I. We have considered resonances which decay into two stable hadrons [10].
Once one computes the K-matrix by providing the relevant masses and widths of resonances, the phase
shift can obtained using the relation δI,L = tan−1 K I,L. Then using Equation (3) one can calculate Pint.

2.2. Interaction Using Experimental Phase Shift

For repulsive interactions and for interactions where the information about mR and ΓR are not
available the K-matrix formalism is not applicable. For those cases we taken the phase shifts information
from experimental data and used them directly in Equation (3) to calculate thermodynamical quantities.
For repulsive (πN, KN) and nucleon-nucleon (NN) interaction phase shifts we use the data from the SM16
partial wave analysis [11]. For the repulsive isotensor channel δ2

0 in the ππ scattering we use the data from
Ref. [12].

3. Results and Discussion

Figure 1 shows the temperature dependence of normalized pressure (P/T4), entropy density (s/T3)
and the interacting measure ((ε − 3P)/T4) at zero chemical potential [13]. Both ‘Stable hadrons’ and
‘Zero-width’ correspond to the results of non interacting HRG model. For ‘Stable hadrons’ we consider only
the stable baryon and meson octets whereas for ‘Zero-width’ we consider stable hadrons and resonances
as used in K-matrix formalism. So differences between these two results are due to the resonances present
in the model. ‘Total’ contains both the attractive and repulsive interaction whereas ‘KM’ contains only
the attractive part. Both ’KM’ and ’Total’ contain non interacting part (stable hadrons) as well. All the
thermodynamic quantities shown in this figure increase as we include the attractive interaction (see the
differences between ‘Zero-width’ and ‘KM’). Further, these quantities decrease slightly (‘Total’) when
we include repulsive interaction. The effect of attractive interaction is larger compared to the repulsive
interaction and hence the thermodynamic quantities in presence of both attractive and repulsive interaction
(‘Total’) are larger compared to the results of ’Zero-width’. We compare our results with LQCD data of
Refs. [14,15]. We observe that the interacting model (‘Total’) provides a satisfactory description in the
hadronic phase of LQCD data.

The effect of interactions are most prominent when we calculate second order susceptibilities. Figure 2
shows the variation of χ2

B, χ11
BS and CBS with temperature at zero chemical potential. Effect of both attractive

and repulsive interactions are strong in these quantities. From our present analysis we observe that the
strength of the repulsive interaction has the following order πN > KN > NN. Results are compared with
LQCD data of Refs. [2,16,17]. Results for χ2

B, χ11
BS and CBS (−3 χ11

BS/χ2
S) agree well with the LQCD data,

in the case when both attractions and repulsions are taken into account.
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Figure 1. Temperature dependence of (a) P/T4, (b) s/T3 and (c) (ε− 3P)/T4 at zero chemical potential.
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Figure 2. Temperature dependence of second order susceptibilities (a) χ2
B (b) χ11

BS and (c) CBS at zero
chemical potential.
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