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Abstract: Considering the kinetic Boltzmann equation in the limit of very few collisions, we study the
evolution of the phase space distribution of bottomonia interacting with an expanding gas of massless
partons. We investigate the scaling of the anisotropic flow coefficients on the initial eccentricities and
the inverse Knudsen number, and compute their transverse momentum dependence.
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1. Introduction

One of the main pillars underlying the physical interpretation of experimental data from
ultrarelativistic collisions of heavy nuclei at RHIC or LHC is the collective flow of outgoing particles [1].
In particular, the measured values of the Fourier coefficients

vn(pT) =
∫

einϕ d2N
d2pT

dϕ

/∫ d2N
d2pT

dϕ, (1)

which quantify the azimuthal anisotropy of the transverse emission pattern, can be adequately
reproduced in fluid-dynamical descriptions of the created fireball expansion, where ϕ denotes the
azimuth of the transverse momentum pT of a particle and d2N/d2pT the final-state pT-distribution.
The anisotropic flow coefficients vn reflect the asymmetry of the initial transverse geometry of the
overlap region of the colliding nuclei, quantified by eccentricities εm and symmetry planes Φm.

The fluid-dynamical interpretation has been challenged by measurements of very similar
coefficients vn in “smaller systems”, as created in p + A or even high multiplicity p + p collisions,
in which the creation of a collectively behaving medium was not expected. This has led to a
renaissance of studies utilizing Boltzmann kinetic theory in the few collisions regime of small inverse
Knudsen number Kn−1 [2–6]. In such approaches, the transverse momentum distribution entering
Equation (1) is actually the late time limit of a time-dependent distribution, which is itself related by a
straightforward integral

d2N
d2pT

(t, pT) =
∫

f (t, x, pT) d2x (2)

to the central object of the kinetic theoretical framework, viz., the phase-space distribution f (t, x, pT),
whose evolution is governed by the Boltzmann equation. Note that Equation (2) implicitly means
that we only consider a two-dimensional setup hereafter—the generalization to a three-dimensional
evolution with longitudinal boost invariance, as approximately holds around midrapidity, is quite
straightforward.
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While the kinetic-theoretical ansatz should certainly be relevant for the description of small and
dilute systems, it may also hold for the larger ones created in A + A collisions, in the case of particles
that barely interact with the rest of the fireball. Prominent examples are high-momentum partons that
can quickly escape the system [4], or color-neutral objects like heavy quarkonia generated in the initial
stage provided the medium energy density is such that they remain bound. In these proceedings we
briefly present the main elements of the description and apply it to an expanding system of massless
“medium particles” (partons, labeled with a subscript p) and few massive particles (bottomonia, labeled
with B), and demonstrate that even very few collisions in average per bottomonium lead to sizable
anisotropic flow coefficients.

2. Dynamics in the Few Collisions Regime

2.1. Initial Condition and Evolution Equation

The starting point of the model is an initial condition at time t = 0 for each single-particle phase
space distribution: for particles of type j (with j = B or p), we assume

f (0)j (0, x, pj) =
Nj F(pj)

2πR2
j

e−r2/2R2
j

(
1 − 4ε2,j e−r2/2R2

j

(
r

Rj

)2

cos
[
2(θ − Φ2,j)

])
(3)

where (r, θ) are centered polar coordinates in position space, while Rj is a typical length scale of the
initial overlap region. The exact form of the initial momentum distribution F(pj) plays no role in the
following, apart from its dependence on the modulus pj of the transverse momentum only, meaning
that there is no anisotropic flow in the initial state, and its independence from the transverse position.
Nj is the initial number of particles of type j, while ε2,j is the eccentricity of the almond-shaped
spatial distribution, with a shorter axis along Φ2,j. Higher order initial eccentricities (triangularity
ε3,j. . . ) are easily accommodated in the model, but are left aside for brevity. For the curves shown in
Section 3, we assumed Φ2,B = Φ2,p and RB = Rp. Eventually, the function exp(−r2/2R2

j ) multiplying

the cos(2θ) term is a convenient cutoff function regulating the growth of r2 at large r; other choices for
that function are possible, without any significant influence on the final results.

The ensuing evolution of the phase space distributions is governed by the relativistic
Boltzmann equation

pµ
j ∂µ f j(t, x, pj) = Cj,coll.

[
fB, fp

]
, (4)

where Cj,coll. denotes the collision term modeling the influence of scatterings on f j. Combining this
evolution equation (integrated over x) and Equations (1) and (2), one can compute the time-dependence
of the anisotropic flow coefficients vn, and in particular their late-time value.

2.2. Free Streaming

In the absence of inter-particle scatterings, which corresponds to a vanishing collision term in
Equation (4), i.e., to the homogeneous equation, the Boltzmann equation is solved by the free-streaming
solution f (0)j (t, x, pj) that simply propagates the initial distribution at time t = 0 according to

f (0)j (t, x, pj) = f (0)j (0, x − tvj, pj), (5)

where vj denotes the velocity corresponding to the momentum pj. As is well known, in that case the
momentum anisotropy at any time is that in the initial state, i.e., no anisotropic flow is generated.
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2.3. Few Collisions Regime

Let us now assume that the particles of each species undergo a small number of collisions per
particle, such that the resulting phase space densities slightly deviate from the free-streaming ones [3]:

f j(t, x, pj) = f (0)j (t, x, pj) + f (1)j (t, x, pj), (6)

where f (1), which vanishes at time t = 0, is to be much smaller than f (0). We further assume that the
bottomonia are so few in the system that they do not scatter with themselves, but only on the massless
partners, in such a way that such encounters always lead to their dissociation. That is, the final state
bottomonia are those that escaped the fireball, and their flow thus results from an anisotropic escape
mechanism [7]. Disregarding the possible reformation of bottomonia, we thus consider as collision
term in their evolution equation

CB,coll.
[

fB, fp
]
= −

∫
fB(t, x, pB) fp(t, x, pp)σBp vBp

d2pp

(2π)2 (7)

with vBp the relative velocity between the two colliding particles and σBp the interaction cross section.
The latter, which in our two-dimensional setup has the dimension of a length, sets the scale of the
average number of collisions per bottomonium—which has to be smaller than 1 since every collision
destroys the participating bottomonium! The inverse Knudsen number Kn−1 is thus proportional to
NpσBp/R. Note that Figure 1 was obtained with a constant cross section, which is not realistic—one
would wish σBp to be related to the medium energy density, to model the temperature dependence
of bottomonium suppression—but can be quite easily improved to come closer to more elaborate
predictions for bottomonium flow [8].

Since the correction terms f (1)j is much smaller than the corresponding f (0)j , one may approximate
the collision term by replacing each f by the free-streaming solutions (5), so that everything is
determined by the initial state distributions (3).

Figure 1. Elliptic flow v2 and quadrangular flow v4 of bottomonia as a function of transverse
momentum for initial eccentricities ε2 equal to 0.5.

3. Results and Discussion—Bottomonium Anisotropic Flow in the Few Collisions Regime

Starting from the initial distributions (3), we can compute the anisotropic flow coefficients v2 and
v4 of bottomonia for the case of a collision kernel (7) estimated with the free-streaming distributions.
At a given transverse momentum (or, strictly speaking, transverse velocity, since this is the relevant
kinematic quantity in the Boltzmann equation), we find

v2 ∝
NpσBp

R
(ε2,p + ε2,B) , v4 ∝

NpσBp

R
ε2,pε2,B, (8)

where we left aside unimportant numerical factors. We thus find that, to the considered level
of approximation, both v2 and v4 are proportional to Kn−1, as reported in Ref. [6]. By keeping
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distinct eccentricities for the initial distributions of bottomonia and massless partners, we exhibit
specific scalings with ε2,p and ε2,B, which to our knowledge were never noted before: both contribute
independently to v2, which is linear in the eccentricities, and together to v4, which is of quadratic
order. Note that by deliberately omitting any “quadrangularity” ε4 in the initial state, we miss the
corresponding contributions to v4 [6].

Setting now the average number of collisions per bottomonium to 1—which is physically absurd
since none is surviving, but gives an upper limit on the signal—and taking both eccentricities to be
equal to 0.5, we show in Figure 1 the transverse momentum dependence of these anisotropic flow
coefficients. In comparison to more elaborate computations [7,8], both v2 and v4 grow over the whole
momentum range: in contrast to those models, we have no mechanism to “protect” the bottomonia
from destruction, like the competition between their formation time—there is none in our model—and
the time scale for the drop of the disassociation cross section, which we take to be constant.

Nonetheless the main result from our approach should be clear, namely that the considered
mechanism efficiently produces sizeable anisotropic flow coefficients vn—although v4 is at the limit of
what is measurable. We admittedly enhanced the signals by going to the maximal acceptable value for
Kn−1 and implementing a constant cross section, which means that the bottomonia feel the asymmetric
shape—which naturally decreases with time—of the fireball along the whole evolution. On the other
hand, by considering a free-streaming medium of massless constituents, we maximize its expansion
rate and thus its rarefaction, which in turn works in the opposite direction, diminishing the signal.

An important feature of our approach is that we can improve the model in a rather systematic way,
while still remaining at the semi-analytical level for the calculation of the anisotropic flow coefficients
vn, at least as long as one keeps the assumption of a small number Kn−1, which is anyway meaningful
for bottomonia. Of course, a natural extension is to add the longitudinal space dimension. We can
further distort the initial distributions, either including higher-order eccentricities, which will give
rise to other anisotropic flow harmonics, or examining how differences between the distributions
(symmetry planes, sizes) of the two particle species influence the final results. Another direction is to
modify the ansatz for the distribution of partons directly in the collision integral, going for instance to
an equilibrium distribution corresponding to a thermalized medium. As was mentioned above, we
will also implement more realistic cross sections.

All in all, we can explore which ingredients allow for a better comparison to experimental data,
at least for heavy quarkonia, for which the model should be helpful both in A + A collisions and in
smaller systems. Our present and subsequent findings need also be compared with numerical studies
done in this direction, to support their calibration in the few collisions regime.

Funding: We thank support by the Deutsche Forschungsgemeinschaft (DFG) through the grant CRC-TR 211
“Strong-interaction matter under extreme conditions”.
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