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Abstract: Evaluation of the performance of the parameterization schemes used in the WRF model is 
assessed for temperature and precipitation over Europe at 36 km by 36 km grid resolution using 
gridded data from the ECA & D 0.25° regular grid. Simulations are performed for a winter (i.e., 
January 2015) and a summer (i.e., July 2015) month using the two way nesting approach. A 
step-wise decision approach is followed, beginning with 18 simulations for the various 
microphysics schemes followed by 45 more, concerning all of the model’s PBL, Cumulus, 
Long-wave, Short-wave and Land Surface schemes. The best performing scheme at each step is 
chosen by integrating the entropy weighting method ‘Technique for Order Performance by 
Similarity to Ideal Solution’ (TOPSIS). The concluding scheme set consists of the 
Mansell-Ziegler-Bruning microphysics scheme, the Bougeault-Lacarrere PBL scheme, the 
Kain-Fritsch cumulus scheme, the RRTMG scheme for short-wave, the New Goddard for 
long-wave radiation and a seasonal-variable sensitive option for the Land Surface scheme.  

Keywords: WRF; parameterizations; sensitivity; microphysics; PBL; Cumulus; Long-wave; 
short-wave; Europe 

 

1. Introduction 

The Advanced Research Weather Research and Forecasting model (ARW-WRF, hereafter WRF) 
[1] is a nonhydrostatic mesoscale numerical weather prediction system, that includes a wide range of 
physical parameterizations and it can be initialized either by data from a GCM or by reanalysis data. 
It is an ideal tool for studying phenomena that require high spatial resolution. WRF applications 
only use a single set of parameterization schemes due to the computational cost of running all 
possible combinations. Choosing the best performing set of parameterizations is challenging because 
their performance is highly spatial and time dependent. A significant number of studies have been 
conducted, exploring WRF sensitivity to different parameterization schemes e.g., [2–6].  

Mooney et al. [2] evaluated the sensitivity of WRF to several parameterization schemes for 
regional climates of Europe over the period 1990–1995. Their results for temperature show a 
significant dependence on the land surface model, while averaged daily precipitation levels appear 
to be relatively insensitive to the longwave radiation scheme chosen. They conclude that modelling 
precipitation is problematic for WRF with biases of up to 100%. Borge et al. [3] studied WRF 
sensitivity over the Iberian Peninsula for two 1-week periods in the winter and summer of 2005. 
Their findings suggest that no particular scheme or option produces the best results for all the 
statistical parameters and/or geographical locations examined. The optimum configuration they 
provided for the model is based on aggregated performance. Bukovsky and Karoly [4] examined 
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how different land surface models and cumulus schemes affect precipitation over North America for 
May, June, July, and August over the period 1991–1995. Their results showed that precipitation was 
sensitive to the choice of land surface model and cumulus scheme, emphasizing the importance of 
testing WRF output for sensitivity to parameterizations for regional climate modelling applications. 
Jin et al. [5] also presented a sensitivity study of four land surface schemes in the WRF model over 
the western US. Their simulation period covered a year from 1 October 1995 to 30 September 1996, 
resulting in acknowledging the strong effect that land surface processes have on temperature and 
their poor effect on precipitation which is overestimated by the model. Flaounas et al. [6] examined 
how convection and planetary boundary layer (PBL) parameterization affect the sensitivity of WRF 
in a study of the 2006 West African monsoon. Their results show that PBL schemes have the 
strongest effect on the vertical distribution of temperature, humidity, and rainfall amount, whereas 
precipitation variability is particularly sensitive to convection parameterization schemes.  

The objective of this study is to assess the sensitivity of WRF parameterizations over Europe at a 
36 × 36 km grid cell resolution and produce a final parameterization combination that performs best 
for the whole European region. The long term purpose of this study is to calibrate the RCM to its best 
possible performing set up in order to be used for downscaling GCM data. 

2. Method 

2.1. Modelling Domains and Initialization 

The Weather Research and Forecasting (WRF) [1] version 3.7.1 is used, here, to dynamically 
downscale the ENSEMBLES daily gridded observational dataset (E-OBS) [7, 8] in a nesting approach 
over Europe in order to assess the model’s sensitivity to different parameterization set ups by 
examining its ability to reproduce spatial patterns of the mean temperature and precipitation over 
Europe. Due to the computationally prohibitive nature of running WRF the simulations are 
performed for a winter and a summer month (i.e., January and July 2015). The dynamical 
downscaling approach is following the two way nesting approach with grid resolutions of 108 km 
and 36 km with the finer nested domain covering the European region (Figure 1).  

 

Figure 1. WRF multinesting domain configuration approach. 

The initial set of simulations concerned the Microphysics parameterization schemes with all 
other parameterizations at their default values. The second simulation group explored the effect of 
the PBL schemes since it has no direct interactions with microphysics [9] (Figure 2), followed by the 
Cumulus parameterizations which do not interact with PBL, the Longwave and Shortwave radiation 
schemes being independent of the previous ones and finally Land Surface schemes. Our simulation 
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groups include most of the existing options the WRF model can offer. Any options that are not 
included in this study were either extremely time consuming, not being able to run with the model’s 
multi-core mode, or did not produce an hourly output so they were excluded on the basis of not 
being on the same time scale with the rest. 

 
Figure 2. Interactions between WRF parameterization schemes. 

At the end of each simulation group, statistical measures for model’s performance were 
calculated (Table 1) as well as a spatial distribution map of the mean bias was created. The 
estimation of these measures was conducted by comparison of the model’s mean daily output to the 
E-OBS dataset from the EU-FP6 project ENSEMBLES provided by the ECA & D project for every 
grid cell (http://www.ecad.eu). 

Table 1. Statistical measures representing each simulation. 

Measure Formula

Mean bias 
∑ (ܺ௣௥௘ௗ௜௖௧௘ௗ − ܺ௢௕௦௘௥௩௘ௗ)௡௜ୀଵ ݊  

Root square error ඨ∑ (ܺ௣௥௘ௗ௜௖௧௘ௗ − ܺ௢௕௦௘௥௩௘ௗ)ଶ௡௜ୀଵ ݊  

Index of agreement 1 − ∑ (ܺ௣௥௘ௗ௜௖௧௘ௗ − ܺ௢௕௦௘௥௩௘ௗ)ଶ௡௜ୀଵ∑ (หܺ௣௥௘ௗ௜௖௧௘ௗ − തܺ௢௕௦௘௥௩௘ௗห + |ܺ௢௕௦௘௥௩௘ௗ − തܺ௢௕௦௘௥௩௘ௗ|)ଶ௡௜ୀଵ  

Mean absolute error 
∑ |ܺ௣௥௘ௗ௜௖௧௘ௗ − ܺ௢௕௦௘௥௩௘ௗ|௡௜ୀଵ ݊  

In order to identify the best parameterization option for each simulation group the TOPSIS 
(Technique for Order Preference by Similarity to the Ideal Solution) method was utilized. It is a 
multi-criteria decision analysis method summarized below. Our decision making approach focused 
on mean temperature prediction, being the variable best forecasted by numeric models and 
additionally, the effects of our scheme choices on precipitation were also assessed.  

2.2. Technique for Order Preference by Similarity to the Ideal Solution 

The TOPSIS method was first developed by Hwang and Yoon [10] with further developments 
by Yoon [11] and Hwang et al. [12]. It ranks the alternatives according to their distances from the 
ideal and the negative ideal solution, i.e., the best alternative has simultaneously the shortest 
distance from the ideal solution and the farthest distance from the negative ideal solution. Some of 
the advantages of TOPSIS methods are: simplicity, rationality, comprehensibility, good 
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computational efficiency and ability to measure the relative performance for each alternative in a 
simple mathematical form. TOPSIS is a method of compensatory aggregation that compares a set of 
alternatives by identifying weights for each criterion, normalizing scores for each criterion and 
calculating the geometric distance between each alternative and the ideal alternative, which is the 
best score in each criterion. The TOPSIS process is carried out as follows:  

Step 1: Creating an evaluation matrix consisting of ݉ alternatives and ݊ criteria. 

Step 2: Normalizing the evaluation matrix. 

Step 3: Calculating a weighted normalized decision matrix by determining the weights of the 
various factors. In this study Shannon’s entropy theory [13] was adopted in order to calculate 
the weighting factors. 

Step 4: Determining the positive-ideal solution (PIS) and the negative-ideal solution (NIS) by 
defining each of the criteria in use as positive or negative. 

Step 5: Calculating the distance between the target alternative and (PIS) and the distance between 
the target alternative and (NIS). 

Step 6: Calculating the Closeness Coefficient (CC) of each alternative. The coefficient is defined to 
determine the ranking order of each alternative.  

Step 7: Determining the ranking order of all alternatives according to the closeness to the ideal 
solution which is based on the criteria we have inserted in the method and selecting the best or 
the worst one from the set of feasible alternatives.  

3. Results and Discussion 

Τhe various options of Microphysics parameterization schemes were assessed firstly keeping all 
other model options at their default values. The statistical measures were calculated for each 
simulation and were used as input for the multi-criteria ranking method. The TOPSIS ranking 
results as well as the statistical measures are shown in Τable 2. Option 17,the NSSL 2-moment 
Scheme [14], has been chosen as the best Microphysics parameterization scheme: it is ranking 1st for 
temperature in July and 3rd for temperature in January. However, the two better schemes for 
temperature in January (i.e., CAM V5.1 2-moment 5-class Scheme and SBU Stony—Brook University 
Scheme) are not so good for temperature in July. In addition, option 17 presents one of the best 
performances for predicting mean precipitation for January. However, the selected scheme is not 
one of the best for predicting precipitation in July since this month has very low and location 
dependant precipitation rates in Europe. The NSSL 2-mom is a double moment scheme for cloud 
droplets, rain drops, ice crystals, snow, graupel, and hail, which has one prediction equation for 
mass mixing ratio (kg/kg) per species (Qrain, Qsnow, etc.) and a prediction equation for number 
concentration (#/kg) per species (Nrain, Nsnow, etc.). 
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Table 2. Statistical measures and TOPSIS ranking for the Microphysics simulation group. 

Option Microphysics Scheme 
Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking

Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec 
JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 

1 Kessler Scheme [15] −0.41 −1.40 −0.51 −0.37 2.69 2.19 3.54 3.86 0.97 0.97 0.79 0.71 1.98 1.77 1.56 1.81 16 17 17 17 
2 Lin et al. Scheme [16] −0.40 −1.03 0.12 −0.02 2.61 1.93 3.72 3.95 0.97 0.97 0.80 0.73 1.91 1.51 1.68 1.87 15 8 9 2 

3 
WSM3 Single-moment 3-class 

Scheme [17] −0.87 −1.20 0.09 −0.09 2.74 2.01 3.65 3.78 0.96 0.97 0.80 0.74 2.11 1.60 1.66 1.82 17 15 8 4 

4 
WSM5 Single-moment 5-class 

Scheme [17] 
−0.25 −1.20 0.13 −0.10 2.61 2.01 3.62 3.82 0.97 0.97 0.81 0.74 1.89 1.60 1.67 1.82 12 16 10 6 

6 
WSM6 Single-moment 6-class 

Scheme [18] 
−0.25 −1.07 0.13 −0.09 2.61 1.95 3.64 3.83 0.97 0.97 0.81 0.73 1.89 1.53 1.68 1.82 7 10 11 5 

7 Goddard Scheme [19] −0.21 −1.12 0.07 −0.11 2.61 1.99 3.48 3.82 0.97 0.97 0.81 0.73 1.88 1.57 1.61 1.81 5 13 7 7 
8 Thompson Scheme [20] −0.24 −0.89 −0.04 0.16 2.61 1.87 3.44 3.95 0.97 0.98 0.81 0.72 1.89 1.43 1.58 1.94 6 6 6 14 

9 
Milbrandt-Yau Double Moment 

Scheme [21, 22] −0.25 −0.93 0.19 0.17 2.61 1.89 3.51 4.00 0.97 0.97 0.82 0.72 1.90 1.46 1.66 1.95 18 7 14 16 

10 Morrison 2-moment Scheme [23] −0.25 −1.06 −0.02 −0.13 2.62 1.94 3.46 3.79 0.97 0.97 0.81 0.73 1.90 1.52 1.59 1.80 10 9 4 13 

11 CAM V5.1 2-moment 5-class 
Scheme [24] 

−0.02 −1.42 −0.26 −0.54 2.56 2.18 3.62 3.49 0.97 0.97 0.78 0.73 1.81 1.78 1.58 1.65 1 18 18 18 

13 
SBU Stony–Brook University 

Scheme [25] −0.16 −0.87 0.03 0.02 2.59 1.86 3.40 3.85 0.97 0.97 0.81 0.73 1.86 1.43 1.59 1.86 2 5 5 1 

14 
WDM5 Double Moment 5-class 

Scheme [26] −0.25 −1.10 0.15 −0.11 2.60 1.97 3.66 3.82 0.97 0.97 0.80 0.73 1.88 1.54 1.70 1.83 9 11 12 8 

16 
WDM6 Double Moment 6-class 

Scheme [26] 
−0.25 −1.10 0.16 −0.13 2.60 1.97 3.70 3.82 0.97 0.97 0.80 0.73 1.88 1.55 1.71 1.82 8 12 13 12 

17 NSSL 2–moment Scheme [14] −0.17 −0.83 −0.03 0.12 2.59 1.83 3.36 3.83 0.97 0.98 0.81 0.73 1.86 1.40 1.56 1.91 3 1 2 10 

18 
NSSL 2-moment Scheme with 

CCN Prediction [14] −0.17 −0.83 −0.03 0.11 2.59 1.83 3.36 3.83 0.97 0.98 0.81 0.73 1.86 1.40 1.56 1.91 4 3 1 9 

19 NSSL 1-moment 7-class Scheme −0.31 −0.83 −0.25 0.12 2.62 1.83 3.44 3.83 0.97 0.98 0.81 0.73 1.91 1.40 1.57 1.91 13 2 15 11 

21 
NSSL 1-moment 6-class Scheme 

[27] −0.31 −1.13 −0.25 −0.06 2.62 1.99 3.47 3.94 0.97 0.97 0.81 0.71 1.91 1.57 1.58 1.86 14 14 16 3 

28 
Aerosol-aware Thompson 

Scheme [28] −0.25 −0.84 −0.02 0.17 2.60 1.84 3.46 3.95 0.97 0.98 0.81 0.72 1.89 1.41 1.58 1.95 11 4 3 15 
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With the Microphysics option set to 17 we conducted the second set of simulations, assessing 
the PBL options provided by the WRF model. PBL options only work with certain Surface Layer 
options in the model so there were specific combinations of PBL/Surface Layer schemes to be used as 
presented in Table 3. A PBL scheme’s purpose is to distribute surface fluxes with boundary layer 
eddy fluxes and allow for PBL growth by entrainment. There are 2 classes of PBL schemes  

− Turbulent kinetic energy prediction (Mellor-Yamada-Janjic, MYNN, Bougeault-Lacarrere, 
TEMF, QNSE, CAM UW)  

− Diagnostic non-local (YSU, GFS, MRF, ACM2) 

The Surface Layer schemes use similarity theory to determine exchange coefficients and 
diagnostics of 2 m temperature. Moisture and 10 m winds. They provide the exchange coefficient to 
the land-surface models, the friction velocity to the PBL scheme and surface fluxes over water 
points. These schemes have variations in their stability functions and roughness lengths. Τhe best 
performing options for temperature was option 8 for PBL which corresponds to the 
Bougeault-Lacarrere Scheme [29] in combination with option 1 meaning the MM5 Similarity [30] 
Surface Layer scheme. However, these options are not the best for precipitation. The 
Bougeault-Lacarrere Scheme is a turbulent kinetic energy (TKE) prediction scheme while the MM5 
Similarity is based on Monin-Obukhov with Carslon-Boland viscous sub-layer and standard 
similarity functions. 

The next simulation group focused on the Cumulus parameterization schemes shown in Table 
4. Convective parameterization schemes were designed to reduce atmospheric instability in the 
model. Prediction of precipitation is actually just a by-product of the way in which a scheme does 
this. Consequently, these schemes may not predict the location and timing of convective 
precipitation as well as we might expect. For climate models, the location and timing of precipitation 
is less important than for weather forecast models. The scheme that performed best for temperatures 
were the model’s default Kain-Fritsch Scheme [31] (option 1) as well as the OSAS Old Simplified 
Arakawa-Schubert [32] (option 4). We decided to keep the model’s default Kain-Fritsch Scheme 
(option 1) for the next simulation group since it is better for winter precipitation, as well. The 
Kain-Fritsch Scheme is a deep and shallow convection sub-grid scheme using a mass flux approach 
with downdrafts and CAPE removal time scale. It includes cloud, rain, ice and snow detrainment. 

Longwave radiation schemes were the simulation group that followed. These schemes compute 
clear-sky and cloud upward and downward radiation fluxes and they consider IR emission from 
layers. Surface emissivity is based on land-type and flux divergence leads to cooling in a layer while 
downward flux at the surface is important in the land energy budget. IR radiation generally leads to 
cooling in clear air (~2 K/day), stronger cooling at cloud tops and warming at cloud base. The 
options provided by the model are shown in Table 5. Looking at the ranking of the simulations that 
took place, the RRTMG Fast version Longwave Scheme [33] (option 24) had the top ranking in 
predicting mean temperature for both January and July and a relatively high ranking concerning 
precipitation in January. The RRTMG scheme is actually a new version of Rapid Radiative Transfer 
Model including the Monte Carlo Independent Column Approximation (MCICA) [34] method of 
random cloud overlap. 

The Shortwave radiation schemes simulation group was assessed next according to the options 
of Table 6. They compute clear sky and cloudy solar fluxes, including the annual and diurnal solar 
cycle. Most of them consider downward and upward (reflected) fluxes (Dudhia scheme only has 
downward flux). They consider primarily a warming effect in clear sky and they are a very 
important component of surface energy balance. The New Goddard Shortwave Scheme [35] (option 
5) is one of the best schemes for simulating temperature for both months. However, this scheme is 
not among the best schemes for precipitation prediction. 
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Table 3. Statistical measures and TOPSIS ranking for the PBL/Surface Layer simulation group. 

Option PBL/Surface Layer Scheme 
Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking 

Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec 
JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 

1/1 
YSU/MM5 Yonsei University 

Scheme [36]/MM5 [30] 
0.17 0.83 0.03 −0.12 2.59 1.83 3.36 3.83 0.97 0.98 0.81 0.73 1.86 1.40 1.56 1.91 2 2 2 6 

2/2 
MYJ/Eta Mellor-Yamada-Janjic 

Scheme [37]/Eta [38] 
0.33 1.27 0.09 −0.62 2.61 2.13 3.38 4.00 0.97 0.97 0.80 0.72 1.90 1.67 1.56 2.15 11 11 8 13 

4/4 
QNSE/QNSE Quasi-normal 

Scale Elimination Scheme [39] 
0.41 1.92 −0.03 −0.67 2.63 2.60 3.48 4.26 0.97 0.95 0.80 0.70 1.94 2.14 1.62 2.26 14 18 6 14 

5/1 
MYNN2/MM5 Mellor-Yamada 

Nakanishi Niino Level 2.5 
[40]/[30] 

0.36 0.93 0.11 −0.20 2.63 1.90 3.36 3.77 0.97 0.97 0.80 0.73 1.93 1.46 1.56 1.91 12 5 11 4 

5/2 MYNN2/Eta [40]/[38] 0.85 1.58 0.22 −0.28 2.86 2.48 10.11 5.94 0.96 0.96 0.29 0.51 2.15 1.92 2.43 2.22 18 16 18 16 
5/5 MYNN2/MYNN [40] 0.29 1.51 0.11 −0.44 2.63 2.28 3.35 3.87 0.97 0.96 0.81 0.73 1.91 1.81 1.56 2.04 8 12 12 10 

6/1 
MYNN3/MM5 Mellor-Yamada 

Nakanishi Niino Level 3 
[41]/[30] 

0.38 0.96 0.10 −0.18 2.63 1.91 3.37 3.82 0.97 0.97 0.80 0.73 1.93 1.47 1.56 1.93 13 7 9 7 

6/2 MYNN3/Eta [41]/[38] 0.83 1.56 0.11 −0.28 2.84 2.43 11.46 6.20 0.96 0.96 0.25 0.50 2.13 1.89 2.49 2.25 17 15 17 17 
6/5 MYNN3/MYNN [41] 0.31 1.55 0.10 −0.41 2.62 2.29 3.36 3.96 0.97 0.96 0.81 0.72 1.91 1.84 1.56 2.07 9 13 10 12 

7/1 
ACM2/MM5 Asymmetric 

Convection Model 2 Scheme 
[42]/[30] 

0.22 1.08 −0.03 0.04 2.59 1.96 3.37 3.77 0.97 0.97 0.81 0.73 1.88 1.54 1.58 1.81 7 9 3 2 

7/7 ACM2/Pleim-Xiu [42]/[43] 0.22 1.58 −0.11 −0.26 2.59 2.32 3.48 3.96 0.97 0.96 0.80 0.72 1.88 1.89 1.63 1.97 6 14 13 9 

8/1 
BouLac/MM5 

Bougeault-Lacarrere Scheme 
[29]/[30] 

0.002 0.69 −0.07 −0.28 2.61 1.79 3.40 4.00 0.97 0.98 0.81 0.72 1.85 1.36 1.60 2.02 1 1 7 11 

8/2 BouLac/Eta [29]/[38] 0.82 2.08 0.34 −0.03 2.98 3.18 8.60 6.73 0.96 0.93 0.33 0.42 2.22 2.41 2.51 2.35 16 19 19 18 

9/1 
UW/MM5 University of 

Washington Scheme [44]/[30] 
0.32 0.93 0.12 −0.12 2.59 1.89 3.36 3.73 0.97 0.97 0.80 0.73 1.88 1.45 1.55 1.87 10 6 14 3 

9/2 UW/Eta [44]/[38] 0.94 1.68 0.33 −0.13 2.93 2.55 8.75 5.11 0.96 0.95 0.33 0.58 2.20 1.99 2.39 2.15 19 17 16 15 

10/10 
TEMF/TEMF Surface Layer 

Scheme [45] 
0.65 0.97 −0.77 −3.22 2.77 2.16 4.62 9.81 0.96 0.97 0.73 0.46 2.11 1.67 2.07 4.39 15 10 15 19 

11/1 
Shin-Hong/MM5 Scale-aware 

Scheme [46]/[30] 
0.20 0.85 0.04 −0.11 2.59 1.85 3.36 3.82 0.97 0.98 0.81 0.73 1.86 1.41 1.56 1.91 5 3 4 5 

12/1 
GBM/MM5 

Grenier-Bretherton-McCaa 
Scheme [47]/[30] 

0.17 0.99 0.05 −0.18 2.57 1.94 3.36 3.85 0.97 0.97 0.81 0.72 1.85 1.49 1.56 1.93 3 8 5 8 

99/1 MRF/MM5 [48]/[30] −0.19 0.86 0.02 0.13 2.67 1.88 3.31 3.64 0.96 0.98 0.81 0.74 1.88 1.45 1.55 1.76 4 4 1 1 
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Table 4. Statistical measures and TOPSIS ranking for the Cumulus simulation group. 

Option Cumulus Scheme 
Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking

Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec 
JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 

1 
Kain-Fritsch Scheme 

[31] 0.002 0.691 −0.073 −0.282 2.608 1.791 3.404 4.001 0.966 0.977 0.814 0.715 1.854 1.357 1.595 2.020 3 1 2 7 

2 
BMJ Betts-Miller-Janjic 

Scheme [37] −0.004 0.718 0.007 0.222 2.608 1.801 3.345 3.443 0.966 0.977 0.814 0.753 1.851 1.366 1.571 1.651 8 2 3 5 

3 
GF Grell-Freitas 

Ensemble Scheme [49] 
0.003 0.902 −0.087 0.166 2.607 1.866 3.427 3.668 0.966 0.975 0.810 0.736 1.849 1.438 1.603 1.728 5 6 7 2 

4 
OSAS Old Simplified 

Arakawa-Schubert [32] 
−0.001 0.827 0.006 0.335 2.608 1.835 3.338 3.411 0.966 0.976 0.816 0.751 1.850 1.401 1.559 1.611 1 3 6 6 

5 
G3 Grell 3D Ensemble 

Scheme [50] 
−0.002 0.923 −0.110 0.203 2.608 1.873 3.385 3.530 0.966 0.975 0.817 0.749 1.850 1.446 1.590 1.654 4 8 8 4 

6 Tiedtke Scheme [51] −0.003 0.851 0.011 0.587 2.619 1.839 3.320 3.451 0.965 0.976 0.820 0.742 1.860 1.408 1.544 1.572 7 4 1 10 

14 
NSAS New Simplified 
Arakawa-Schubert [52] 

−0.008 0.902 −0.152 0.384 2.609 1.865 3.420 3.911 0.966 0.976 0.816 0.698 1.851 1.439 1.616 1.714 9 5 9 8 

16 
New Tiedtke Scheme 

[53] 
0.046 0.960 0.229 0.514 2.620 1.871 3.269 3.268 0.965 0.975 0.811 0.763 1.865 1.448 1.496 1.544 10 9 10 9 

93 GD Grell-Devenyi 
Ensemble Scheme [50] 

−0.001 0.913 0.046 0.171 2.606 1.871 3.383 3.617 0.966 0.975 0.802 0.737 1.849 1.442 1.577 1.721 2 7 5 3 

99 old KF Old Kain-Fritsch 
Scheme [54] 

0.003 0.991 −0.038 −0.027 2.604 1.912 3.355 3.731 0.966 0.974 0.814 0.728 1.847 1.478 1.579 1.891 6 10 4 1 

Table 5. Statistical measures and TOPSIS ranking for the Longwave Radiation simulation group. 

Option Longwave Scheme 
Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking 

Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec 
JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 

1 
RRTM Longwave 

Scheme [55] 
−0.002 −0.691 0.073 0.282 2.608 1.791 3.404 4.001 0.966 0.977 0.814 0.715 1.854 1.357 1.595 2.020 3 2 4 4 

3 
CAM Longwave 

Scheme [56] 
−0.647 −1.116 0.075 0.135 2.717 1.951 3.391 3.828 0.963 0.973 0.813 0.724 2.062 1.522 1.592 1.935 7 6 5 1 

4 RRTMG Longwave 
Scheme [33] 

−0.319 −0.791 0.054 0.238 2.605 1.809 3.391 3.941 0.966 0.976 0.814 0.718 1.906 1.377 1.582 1.996 4 4 2 2 

5 New Goddard 
Longwave Scheme [35] 

−0.479 −0.936 0.082 0.240 2.599 1.858 3.391 3.929 0.967 0.975 0.814 0.720 1.933 1.429 1.590 1.994 6 5 6 3 

7 
FLG Fu-Liou-Gu 
Longwave [57]  −0.335 −1.981 0.023 −0.308 2.615 3.121 3.421 4.214 0.966 0.931 0.810 0.646 1.916 2.357 1.609 2.033 5 7 1 6 

24 RRTMG Fast Version −0.247 −0.379 0.054 0.323 2.582 1.679 3.392 4.034 0.967 0.980 0.814 0.712 1.880 1.249 1.582 2.051 1 1 3 5 

31 Held-Suarez Relaxation 
Longwave  

−11.015 −10.658 −0.406 −0.797 11.947 11.123 3.352 3.443 0.624 0.584 0.793 0.714 11.163 10.665 1.522 1.616 8 8 8 8 

99 
GFDL Longwave 

Scheme [58] −0.217 −0.767 0.102 0.324 2.586 1.787 3.389 4.089 0.967 0.977 0.815 0.708 1.878 1.357 1.596 2.064 2 3 7 7 
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Table 6. Statistical measures and TOPSIS ranking for the Shortwave Radiation simulation group.  

Option 
Shortwave 

Scheme 

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking
Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec

JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 

1 
Dudhia Shortwave 

Scheme [59] 
−0.247 −0.379 0.054 0.323 2.582 1.679 3.392 4.034 0.967 0.980 0.814 0.712 1.880 1.249 1.582 2.051 7 6 3 3 

2 
GFSC Goddard 

Shortwave Scheme 
[35] 

0.218 0.493 0.087 0.842 2.541 1.873 3.402 4.841 0.969 0.973 0.815 0.669 1.791 1.478 1.593 2.435 6 7 8 8 

3 
CAM Shortwave 

Scheme [56] −0.012 −0.215 0.056 0.427 2.536 1.711 3.389 4.206 0.968 0.978 0.815 0.703 1.801 1.300 1.582 2.139 1 4 4 5 

4 
RRTMG 

Shortwave Scheme 
[33] 

−0.192 −0.116 0.079 0.574 2.518 1.760 3.385 4.504 0.969 0.977 0.816 0.689 1.810 1.358 1.582 2.263 5 1 6 7 

5 
New Goddard 

Shortwave Scheme 
[35] 

0.071 0.180 0.061 0.541 2.526 1.709 3.390 4.320 0.969 0.979 0.815 0.695 1.784 1.305 1.583 2.204 2 3 5 6 

7 
FLG Fu-Liou-Gu 

Shortwave Scheme 
[57] 

−1.474 −7.362 0.053 −0.473 3.592 7.884 3.406 3.540 0.930 0.685 0.813 0.726 2.754 7.369 1.589 1.700 8 8 2 4 

24 RRTMG Fast 
Version 

−0.133 −0.173 0.079 0.216 2.506 1.727 3.383 4.081 0.970 0.978 0.816 0.710 1.795 1.315 1.582 2.036 4 2 7 2 

99 GFDL Shortwave 
Scheme [58] 

0.123 −0.356 0.043 0.153 2.573 1.725 3.390 3.583 0.967 0.978 0.814 0.746 1.831 1.311 1.579 1.871 3 5 1 1 

                      

Table 7. Statistical measures and TOPSIS ranking for the Land Surface simulation group. 

                      

Option 
Land Surface 

Scheme 

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking 
Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec 

JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 

1 
5-layer Thermal 
Diffusion [60] 

−0.071 −0.180 −0.061 −0.541 2.526 1.709 3.390 4.320 0.969 0.979 0.815 0.695 1.784 1.305 1.583 2.204 2 3 3 1 

2 Unified Noah Land 
Surface Model [61] 

0.585 0.3356 0.1108 1.2449 2.5308 1.4518 2.8669 4.9301 0.9719 0.9821 0.8572 0.6684 1.7834 1.1292 1.4464 2.7321 3 4 1 5 

3 RUC Land Surface 
Model [62] 

1.3032 0.1676 0.1723 0.9127 2.8025 1.4132 2.8847 4.5981 0.9669 0.9836 0.8579 0.6874 2.0471 1.1056 1.4654 2.4994 4 1 4 3 

4 Noah-MP Land 
Surface Model [63] 

1.2921 0.1795 0.1175 0.829 2.9321 1.4624 2.8976 4.4826 0.9647 0.9816 0.857 0.6958 2.1029 1.1459 1.4618 2.4304 5 2 2 2 

7 
Pleim-Xiu Land 

Surface Model [64] 0.1206 0.6808 0.2615 1.0901 2.2981 1.934 2.9817 4.7504 0.9729 0.9648 0.852 0.6765 1.6198 1.4384 1.5162 2.6388 1 5 5 4 
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The final simulation group involved Land Surface parameterization schemes shown in Table 7. 
A Land-Surface model predicts soil temperature and soil moisture in layers (4 for Noah and 
NoahMP, 6 for RUC, 2 for Pleim-Xiu) and snow water equivalent on ground. It also may predict 
canopy moisture only (Noah, NoahMP). The results show that land surface processes strongly affect 
temperature simulations which is a conclusion consistent with previous studies [5], while 
precipitation remains relatively unaffected. Scheme performances varied, revealing their seasonal 
dependence. For winter temperature the Pleim-Xiu Land Surface Model [64] had the best statistical 
results, while the scheme performed poorly for summer mean temperature where the RUC Land 
Surface Model [62] performed best. The Pleim-Xiu Land Surface Model is a two-layer scheme with 
vegetation and sub-grid tiling, while the RUC Land Surface Model predicts soil temperature and 
moisture in six layers using multi-layer snow and frozen soil physics. Regarding precipitation, the 
Unified Noah Land Surface Model [61] gave the best results for January while performing the worst 
for July, where the default 5-layer Thermal Diffusion [60] presented the best results.  

Spatial mean bias plots using the best option of all the schemes examined above are presented 
for temperature (Figure 3) and precipitation (Figure 4) along with the initial plots using model’s 
default options. These plots will allow to assess spatial improvements for each option selected.  

The approach followed here greatly increases the model’s prediction ability for temperature 
(Figure 3). Initial January simulations show significant deviations from the observed values with 
underestimations in central-east Europe, northern and central Italy, Greece and the Iberian up to 
three degrees Celsius. Overestimations are located mostly in Scandinavia reaching five degrees 
Celsius. Underestimations were also presented for almost all continental Europe in the initial July 
simulation reaching 4–5 °C in the Iberian Peninsula, France and Italy. Looking at the final 
simulations, it is obvious that almost all of the model's intense failures have disappeared. There is a 
convergence of the grid deviations and a general smoothing without severe failures. The confined 
regions for model’s underestimation in January are located in central and northern Italy as well as 
the far east end of Europe, while model’s overestimation is found again in Scandinavia. July 
prediction remains poor in a very small region of central Italy and north Spain with a relatively 
significant underestimation, while overestimation is found in south Hungary and in the Balkans, 
locally. 

There is no particular model deviation trend for the precipitation during January. However, 
significant underestimation is noticed locally in central UK, central Italy and Greece (Figure 4) and 
overestimation in central and North UK, north Italy, east Scandinavia and some parts of the Balkans. 
During July underestimation is noticed in central and Eastern Europe, locally while overestimation 
is found in Italy, west Greece and eastern Spain, locally. Although the strategy we pursued had the 
improvement of the temperature forecast as a central axis, we can see that the forecast for average 
precipitation has also improved to a certain extent.  
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Option  JANUARY JULY 

Simulation with the 
model’s default 

options 

 

MP_Physics NSSL 2–
moment Scheme 

PBL/Surface Layer 
BouLac/MM5 

Bougeault-Lacarrere 
Scheme (CUMULUS) 

Longwave RRTMG 
Fast Version 

Shortwave New 
Goddard Shortwave 

Scheme 

Land Surface 

Pleim-X
iu Land 
Surface 
Model 

RUC Land 
Surface 
Model 

Figure 3. Temperature Mean Bias spatial distribution after each simulation step. 
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Option  JANUARY JULY 

Simulation with the 
model’s default options 

 

MP_Physics NSSL 
2-moment Scheme 

PBL/Surface Layer 
BouLac/MM5 

Bougeault-Lacarrere 
Scheme (CUMULUS) 

Longwave RRTMG Fast 
Version 

Shortwave New Goddard 
Shortwave Scheme 

Land Surface 

Unified 
Noah Land 

Surface 
Model 

5-layer 
Thermal 
Diffusion 
(default) 

Figure 4. Precipitation Mean Bias spatial distribution after each simulation step. 
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4. Conclusions 

PBL Bougeault-Lacarrere Scheme [29] in cooperation with the MM5 [30] Surface Layer Scheme 
had the best performance in predicting January and July temperature and a moderate rank for 
precipitation. The Yonsei University Scheme [36] is the second best choice as far as temperature 
prediction is concerned and winter precipitation too. If our strategy had precipitation prediction as 
its main axis, then the MRF/MM5 [48]/[30] combination (option 99) would be the choice we would 
have made. 

The default Kain-Fritsch Scheme [31] gave the best results as the Cumulus parameterization 
scheme similar to the OSAS Old Simplified Arakawa-Schubert [32] ranking but the first was our 
shceme of choice as it performed better for January precipitation. 

RRTMG Longwave fast version Scheme [33] scored the highest for temperature prediction and 
moderately for precipitation. The non-fast version of the RRTMG scheme would be our choice if our 
steps were precipitation driven. For shortwave radiation scheme we chose the New Goddard [35] 
which had a similar performance with the CAM Scheme [56]. The spatial distribution improvement 
of the New Goddard scheme was far better for July temperature prediction establishing it as our 
choice. The GFDL Shortwave Scheme [58] had the highest rank in predicting precipitation for both 
January and July. 

Our final simulation group assessed the effect of the Land Surface model Pleim-Xiu Land 
Surface Model [64] performed best in predicting January temperature but poorly for July where the 
RUC Land Surface Model [62] produced the best results. As far as precipitation is concerned Unified 
Noah Land Surface Model [61] and the 5-layer Thermal Diffusion [60] performed best for January 
and July precipitation, respectively. To set up the model for a multiseasonal downscaling study one 
should choose the best performing Land Surface model for each season.  
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