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Abstract: Evaluation of the performance of the parameterization schemes used in the WRF model is
assessed for temperature and precipitation over Europe at 36 km by 36 km grid resolution using
gridded data from the ECA & D 0.25° regular grid. Simulations are performed for a winter (i.e.,
January 2015) and a summer (i.e., July 2015) month using the two way nesting approach. A
step-wise decision approach is followed, beginning with 18 simulations for the various
microphysics schemes followed by 45 more, concerning all of the model’s PBL, Cumulus,
Long-wave, Short-wave and Land Surface schemes. The best performing scheme at each step is
chosen by integrating the entropy weighting method ‘Technique for Order Performance by
Similarity to Ideal Solution” (TOPSIS). The concluding scheme set consists of the
Mansell-Ziegler-Bruning microphysics scheme, the Bougeault-Lacarrere PBL scheme, the
Kain-Fritsch cumulus scheme, the RRTMG scheme for short-wave, the New Goddard for
long-wave radiation and a seasonal-variable sensitive option for the Land Surface scheme.

Keywords: WRF; parameterizations; sensitivity; microphysics; PBL; Cumulus; Long-wave;
short-wave; Europe

1. Introduction

The Advanced Research Weather Research and Forecasting model (ARW-WRE, hereafter WRF)
[1] is a nonhydrostatic mesoscale numerical weather prediction system, that includes a wide range of
physical parameterizations and it can be initialized either by data from a GCM or by reanalysis data.
It is an ideal tool for studying phenomena that require high spatial resolution. WRF applications
only use a single set of parameterization schemes due to the computational cost of running all
possible combinations. Choosing the best performing set of parameterizations is challenging because
their performance is highly spatial and time dependent. A significant number of studies have been
conducted, exploring WRF sensitivity to different parameterization schemes e.g., [2-6].

Mooney et al. [2] evaluated the sensitivity of WRF to several parameterization schemes for
regional climates of Europe over the period 1990-1995. Their results for temperature show a
significant dependence on the land surface model, while averaged daily precipitation levels appear
to be relatively insensitive to the longwave radiation scheme chosen. They conclude that modelling
precipitation is problematic for WRF with biases of up to 100%. Borge et al. [3] studied WRF
sensitivity over the Iberian Peninsula for two 1-week periods in the winter and summer of 2005.
Their findings suggest that no particular scheme or option produces the best results for all the
statistical parameters and/or geographical locations examined. The optimum configuration they
provided for the model is based on aggregated performance. Bukovsky and Karoly [4] examined
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how different land surface models and cumulus schemes affect precipitation over North America for
May, June, July, and August over the period 1991-1995. Their results showed that precipitation was
sensitive to the choice of land surface model and cumulus scheme, emphasizing the importance of
testing WRF output for sensitivity to parameterizations for regional climate modelling applications.
Jin et al. [5] also presented a sensitivity study of four land surface schemes in the WRF model over
the western US. Their simulation period covered a year from 1 October 1995 to 30 September 1996,
resulting in acknowledging the strong effect that land surface processes have on temperature and
their poor effect on precipitation which is overestimated by the model. Flaounas et al. [6] examined
how convection and planetary boundary layer (PBL) parameterization affect the sensitivity of WRF
in a study of the 2006 West African monsoon. Their results show that PBL schemes have the
strongest effect on the vertical distribution of temperature, humidity, and rainfall amount, whereas
precipitation variability is particularly sensitive to convection parameterization schemes.

The objective of this study is to assess the sensitivity of WRF parameterizations over Europe at a
36 x 36 km grid cell resolution and produce a final parameterization combination that performs best
for the whole European region. The long term purpose of this study is to calibrate the RCM to its best
possible performing set up in order to be used for downscaling GCM data.

2. Method

2.1. Modelling Domains and Initialization

The Weather Research and Forecasting (WRF) [1] version 3.7.1 is used, here, to dynamically
downscale the ENSEMBLES daily gridded observational dataset (E-OBS) [7, 8] in a nesting approach
over Europe in order to assess the model’s sensitivity to different parameterization set ups by
examining its ability to reproduce spatial patterns of the mean temperature and precipitation over
Europe. Due to the computationally prohibitive nature of running WRF the simulations are
performed for a winter and a summer month (i.e., January and July 2015). The dynamical
downscaling approach is following the two way nesting approach with grid resolutions of 108 km
and 36 km with the finer nested domain covering the European region (Figure 1).

WPS Domain Configuration

40°N
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Figure 1. WRF multinesting domain configuration approach.

The initial set of simulations concerned the Microphysics parameterization schemes with all
other parameterizations at their default values. The second simulation group explored the effect of
the PBL schemes since it has no direct interactions with microphysics [9] (Figure 2), followed by the
Cumulus parameterizations which do not interact with PBL, the Longwave and Shortwave radiation
schemes being independent of the previous ones and finally Land Surface schemes. Our simulation
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groups include most of the existing options the WRF model can offer. Any options that are not
included in this study were either extremely time consuming, not being able to run with the model’s

multi-core mode, or did not produce an hourly output so they were excluded on the basis of not
being on the same time scale with the rest.
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Figure 2. Interactions between WRF parameterization schemes.

At the end of each simulation group, statistical measures for model’s performance were
calculated (Table 1) as well as a spatial distribution map of the mean bias was created. The
estimation of these measures was conducted by comparison of the model’s mean daily output to the
E-OBS dataset from the EU-FP6 project ENSEMBLES provided by the ECA & D project for every
grid cell (http://www.ecad.eu).

Table 1. Statistical measures representing each simulation.

Measure Formula
Mean bias E?:l(Xpredicted - Xobserved)
n
jzn Kpreaiccea = )?
Root square error i=1\“4predicted observed
n

Index of agreement 1 Z?:l(Xpredicted - Xobserved)2

Z?=1(|Xpredicted _ Xobserved' + |Xobserved _ Xobservedl)z

n
Mean absolute error Zi=1 |Xpredicted - Xobservedl
n

In order to identify the best parameterization option for each simulation group the TOPSIS
(Technique for Order Preference by Similarity to the Ideal Solution) method was utilized. It is a
multi-criteria decision analysis method summarized below. Our decision making approach focused
on mean temperature prediction, being the variable best forecasted by numeric models and
additionally, the effects of our scheme choices on precipitation were also assessed.

2.2. Technique for Order Preference by Similarity to the Ideal Solution

The TOPSIS method was first developed by Hwang and Yoon [10] with further developments
by Yoon [11] and Hwang et al. [12]. It ranks the alternatives according to their distances from the
ideal and the negative ideal solution, i.e., the best alternative has simultaneously the shortest
distance from the ideal solution and the farthest distance from the negative ideal solution. Some of
the advantages of TOPSIS methods are: simplicity, rationality, comprehensibility, good
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computational efficiency and ability to measure the relative performance for each alternative in a
simple mathematical form. TOPSIS is a method of compensatory aggregation that compares a set of
alternatives by identifying weights for each criterion, normalizing scores for each criterion and
calculating the geometric distance between each alternative and the ideal alternative, which is the
best score in each criterion. The TOPSIS process is carried out as follows:

Step 1: Creating an evaluation matrix consisting of m alternatives and n criteria.
Step 2: Normalizing the evaluation matrix.

Step 3: Calculating a weighted normalized decision matrix by determining the weights of the
various factors. In this study Shannon’s entropy theory [13] was adopted in order to calculate
the weighting factors.

Step 4: Determining the positive-ideal solution (PIS) and the negative-ideal solution (NIS) by
defining each of the criteria in use as positive or negative.

Step 5: Calculating the distance between the target alternative and (PIS) and the distance between
the target alternative and (NIS).

Step 6: Calculating the Closeness Coefficient (CC) of each alternative. The coefficient is defined to
determine the ranking order of each alternative.

Step 7: Determining the ranking order of all alternatives according to the closeness to the ideal
solution which is based on the criteria we have inserted in the method and selecting the best or
the worst one from the set of feasible alternatives.

3. Results and Discussion

The various options of Microphysics parameterization schemes were assessed firstly keeping all
other model options at their default values. The statistical measures were calculated for each
simulation and were used as input for the multi-criteria ranking method. The TOPSIS ranking
results as well as the statistical measures are shown in Table 2. Option 17,the NSSL 2-moment
Scheme [14], has been chosen as the best Microphysics parameterization scheme: it is ranking 1st for
temperature in July and 3rd for temperature in January. However, the two better schemes for
temperature in January (i.e., CAM V5.1 2-moment 5-class Scheme and SBU Stony —Brook University
Scheme) are not so good for temperature in July. In addition, option 17 presents one of the best
performances for predicting mean precipitation for January. However, the selected scheme is not
one of the best for predicting precipitation in July since this month has very low and location
dependant precipitation rates in Europe. The NSSL 2-mom is a double moment scheme for cloud
droplets, rain drops, ice crystals, snow, graupel, and hail, which has one prediction equation for
mass mixing ratio (kg/kg) per species (Qrain, Qsnow, etc.) and a prediction equation for number
concentration (#/kg) per species (Nrain, Nsnow, etc.).
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Table 2. Statistical measures and TOPSIS ranking for the Microphysics simulation group.

50f 16

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking
Option Microphysics Scheme Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec
JAN JUL _JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL
1 Kessler Scheme [15] 041 140 051 037 269 219 354 38 097 097 079 071 198 177 156 181 16 17 17 17
2 Lin et al. Scheme [16] -040 -103 012 -002 261 193 372 395 097 097 080 073 191 151 168 18 15 8 9 2
3 WSM3Singlemoment3-class 07 120 009 -009 274 201 365 378 09 097 080 074 211 160 166 182 17 15 8 4
Scheme [17]
4 WSM5SinglemomentS-class 5,5 159 013 010 261 201 36 38 097 097 081 074 189 160 167 182 12 16 10 6
Scheme [17]
6 WSM6Singlemoment 6-class )5 07 013 000 261 195 364 38 097 097 08 073 189 15 168 18 7 10 11 5
Scheme [18]
7 Goddard Scheme [19] 021 112007 011 261 199 348 382 097 097 08l 073 188 157 16l 181 5 13 7 7
8 Thompson Scheme [20] 024 089 004 016 261 187 344 395 097 098 08 072 189 143 158 194 6 6 6 14
9 Milbrandt-Yau Double Moment o ,5 g3 019 017 261 189 351 400 097 097 082 072 190 146 166 195 18 7 14 16
Scheme [21, 22]
10 Morrison 2-moment Scheme [23] 025 -106 002 0.3 262 194 346 379 097 097 08 073 190 152 159 180 10 9 4 13
11 CAMVS12momentS-class 500 _14p 26 -054 256 218 362 349 097 097 078 075 1sl 178 158 165 1 18 18 18
Scheme [24]
13 SBUStony-Brook University 16 _gg7 003 002 259 186 340 385 097 097 081 073 186 143 159 186 2 5 5 1
Scheme [25]
14 WDMsDouble Moment>-class o5 110 015 -011 260 197 366 38 097 097 080 073 18 154 170 18 9 11 12 8
Scheme [26]
16 WDM6 Double Moment6-class o )5 139 016 -013 260 197 370 382 097 097 080 073 188 155 171 18 8 12 13 12
Scheme [26]
17 NSSL 2-moment Scheme [14] 017 083 -0.03 012 259 183 336 383 097 098 081 073 18 140 156 191 3 1 2 10
18 NSSL2momentScheme with 17 _g63 o035  o11 259 183 336 38 097 098 081 073 18 140 156 191 4 3 1 9
CCN Prediction [14]
19 NSSL 1-moment 7-class Scheme  -0.31 083 025 012 262 183 344 383 097 098 08l 073 191 140 157 191 13 2 15 11
21 NSSL 1'm°me[;t7]6'dass Scheme 31 113 -025 -006 262 199 347 394 097 097 081 071 191 157 158 18 14 14 16 3
28 Aerosol-aware Thompson -025 084 002 017 260 18 346 395 097 098 08 072 189 141 158 195 11 4 315

Scheme [28]
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With the Microphysics option set to 17 we conducted the second set of simulations, assessing
the PBL options provided by the WRF model. PBL options only work with certain Surface Layer
options in the model so there were specific combinations of PBL/Surface Layer schemes to be used as
presented in Table 3. A PBL scheme’s purpose is to distribute surface fluxes with boundary layer
eddy fluxes and allow for PBL growth by entrainment. There are 2 classes of PBL schemes

—  Turbulent kinetic energy prediction (Mellor-Yamada-Janjicc, MYNN, Bougeault-Lacarrere,
TEMF, QNSE, CAM UW)
—  Diagnostic non-local (YSU, GFS, MRF, ACM2)

The Surface Layer schemes use similarity theory to determine exchange coefficients and
diagnostics of 2 m temperature. Moisture and 10 m winds. They provide the exchange coefficient to
the land-surface models, the friction velocity to the PBL scheme and surface fluxes over water
points. These schemes have variations in their stability functions and roughness lengths. The best
performing options for temperature was option 8 for PBL which corresponds to the
Bougeault-Lacarrere Scheme [29] in combination with option 1 meaning the MM5 Similarity [30]
Surface Layer scheme. However, these options are not the best for precipitation. The
Bougeault-Lacarrere Scheme is a turbulent kinetic energy (TKE) prediction scheme while the MM5
Similarity is based on Monin-Obukhov with Carslon-Boland viscous sub-layer and standard
similarity functions.

The next simulation group focused on the Cumulus parameterization schemes shown in Table
4. Convective parameterization schemes were designed to reduce atmospheric instability in the
model. Prediction of precipitation is actually just a by-product of the way in which a scheme does
this. Consequently, these schemes may not predict the location and timing of convective
precipitation as well as we might expect. For climate models, the location and timing of precipitation
is less important than for weather forecast models. The scheme that performed best for temperatures
were the model’s default Kain-Fritsch Scheme [31] (option 1) as well as the OSAS Old Simplified
Arakawa-Schubert [32] (option 4). We decided to keep the model’s default Kain-Fritsch Scheme
(option 1) for the next simulation group since it is better for winter precipitation, as well. The
Kain-Fritsch Scheme is a deep and shallow convection sub-grid scheme using a mass flux approach
with downdrafts and CAPE removal time scale. It includes cloud, rain, ice and snow detrainment.

Longwave radiation schemes were the simulation group that followed. These schemes compute
clear-sky and cloud upward and downward radiation fluxes and they consider IR emission from
layers. Surface emissivity is based on land-type and flux divergence leads to cooling in a layer while
downward flux at the surface is important in the land energy budget. IR radiation generally leads to
cooling in clear air (~2 K/day), stronger cooling at cloud tops and warming at cloud base. The
options provided by the model are shown in Table 5. Looking at the ranking of the simulations that
took place, the RRTMG Fast version Longwave Scheme [33] (option 24) had the top ranking in
predicting mean temperature for both January and July and a relatively high ranking concerning
precipitation in January. The RRTMG scheme is actually a new version of Rapid Radiative Transfer
Model including the Monte Carlo Independent Column Approximation (MCICA) [34] method of
random cloud overlap.

The Shortwave radiation schemes simulation group was assessed next according to the options
of Table 6. They compute clear sky and cloudy solar fluxes, including the annual and diurnal solar
cycle. Most of them consider downward and upward (reflected) fluxes (Dudhia scheme only has
downward flux). They consider primarily a warming effect in clear sky and they are a very
important component of surface energy balance. The New Goddard Shortwave Scheme [35] (option
5) is one of the best schemes for simulating temperature for both months. However, this scheme is
not among the best schemes for precipitation prediction.
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Table 3. Statistical measures and TOPSIS ranking for the PBL/Surface Layer simulation group.

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking
Option PBL/Surface Layer Scheme Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec
JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL

YSU/MMS5 Yonsei University

171 Scheme (36 MM [30] 017 08 003 -0.12 259 183 336 38 097 098 081 073 18 140 156 191 2 2 2 6
opp  MYJEtaMellorYamadajanjic 33 5, g9 0e2 261 213 338 400 097 097 080 072 190 167 156 215 11 11 8 13
Scheme [37]/Eta [38]
4/4 QNSE/QNSE Quasinormal = 0y 195 903 067 263 260 348 426 097 095 080 070 194 214 16 226 14 18 6 14
Scale Elimination Scheme [39]
MYNN2/MMS5 Mellor-Yamada
5/1 Nakanishi Niino Level 2.5 036 093 011  -020 263 190 336 377 097 097 080 073 193 146 156 191 12 5 11 4
[401/[30]
512 MYNN2/Eta [40]/[38] 085 158 022 028 28 248 1011 594 096 096 029 051 215 192 243 222 18 16 18 16
5/5 MYNN2/MYNN [40] 029 151 011 044 263 228 335 387 097 096 081 073 191 181 156 204 8 12 12 10
MYNN3/MMS5 Mellor-Yamada
6/1 Nakanishi Niino Level 3 038 09 010 018 263 191 337 38 097 097 080 073 193 147 156 19 13 7 9 7
[411/[30]
6/2 MYNNB3/Eta [41]/[38] 083 156 001 028 284 243 1146 620 096 096 025 050 213 189 249 225 17 15 17 17
6/5 MYNN3/MYNN [41] 031 155 010 041 262 229 336 39 097 096 081 072 191 184 156 207 9 13 10 12
ACM2/MMS5 Asymmetric
71 ConvectionModel 2 Scheme 022 108 -003 004 259 196 337 377 097 097 081 073 188 154 158 18 7 9 3 2
[42)/[30]
717 ACM2/Pleim-Xiu [42)/[43] 022 158 011 026 259 232 348 396 097 096 080 072 18 189 163 197 6 14 13 9
BouLac/MM5
8/1 Bougeault-Lacarrere Scheme 0.002 0.69 -0.07 -0.28 261 179 340 400 097 098 081 072 18 136 160 2.02 1 1 7 11
[291/[30]
8/2 BouLac/Eta [29]/[38] 082 208 034 003 298 318 860 673 096 093 033 042 222 241 251 235 16 19 19 18
UW/MM5 University of
M ohington Schome 411 o) 032 09 012 012 259 18 33 373 097 097 080 073 188 145 15 1§ 10 6 14 3
9/2 UW/Eta [44]/[38] 094 168 033 013 293 255 875 511 096 095 033 058 220 199 239 215 19 17 16 15
w0 TEMPTEMESurfacelayer oo op o77 320 277 216 462 981 096 097 073 046 211 167 207 439 15 10 15 19
Scheme [45]
np  ShinHongMMbSaaleaware oo, g5 o4 o111 259 185 336 382 097 098 081 073 186 141 156 191 5 3 4 5
Scheme [46]/[30]
GBM/MM5
12/1 Grenier-Bretherton-McCaa 017 099 005 -018 257 194 336 385 097 097 08 072 18 149 156 193 3 8 5 8
Scheme [47]/[30]

99/1 MRE/MMS5 [48]/[30] -0.19 0.86 0.02 0.13 267 18 331 364 096 098 081 074 188 145 155 1.76 4 4 1 1
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Table 4. Statistical measures and TOPSIS ranking for the Cumulus simulation group.
Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking
Option Cumulus Scheme Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec
JAN  JUL _ JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL
1 Kam'Fm[;Cf]‘SCheme 0002 0691 -0073  -0282 2608 1791 3.404 4001 0966 0977 0814 0715 1854 1357 1595 2020 3 1 2 7
2 BMJ Betts-Miller-Janjic 100 0718 0.007 0222 2608 1801 3345 3443 0966 0977 0814 0753 1.851 1366 1571 1651 8 2 3 5
Scheme [37]
GF Grell-Freitas
3 0.003 0902 -0087 0166 2607 1866 3427 3.668 0966 0975 0810 0736 1849 1438 1603 1728 5 6 7 2
Ensemble Scheme [49]
4 OSASOld Simplified o) (007 0006 0335  2.608 1835 3338 3411 0966 0976 0816 0751 1850 1401 1559 1611 1 3 6 6
Arakawa-Schubert [32]
5 G3Grell3D Ensemble 0y 953 0110 0203 2608 1873 3385 3530 0966 0975 0817 0749 1850 1446 159 1654 4 8 8 4
Scheme [50]
6 Tiedtke Scheme [51] —0.003 0851 0011 0587 2619 1839 3320 3451 0965 0976 0820 0742 1.860 1408 1544 1572 7 4 1 10
A implifi
14 NSASNew Simplified o 00 0900 0150 0384 2609 1865 3420 3911 0966 0976 0816 0698 1851 1439 1616 1714 9 5 9 8
Arakawa-Schubert [52]
16 New Tle‘?sﬂgf Scheme 0.046 0960 0229 0514 2620 1871 3269 3268 0965 0975 0811 0763 1.865 1448 1496 1544 10 9 10 9
93 GD Grell-Devenyi —0001 0913  0.046 0171  2.606 1871 3383 3617 0966 0975 0802 0737 1.849 1442 1577 1721 2 7 5 3
Ensemble Scheme [50]
99 OoldKFOld Kain-Fritsch 003 0991 0038 -0.027 2604 1912 3355 3731 0966 0974 0814 0728 1847 1478 1579 1891 6 10 4 1
Scheme [54]
Table 5. Statistical measures and TOPSIS ranking for the Longwave Radiation simulation group.
Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking
Option Longwave Scheme Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec
JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL
1 RRTM Longwave -0.002 -0.691 0073 0282 2608 1791 3404 4001 0966 0977 0814 0715 1854 1357 1595 2020 3 2 4 4
Scheme [55]
CAM Longwave
3 -0647 -1116 0075 0135 2717 1951 3391 3828 0963 0973 0813 0724 2062 1522 1592 1935 7 6 5 1
Scheme [56]
4 RRTMG Longwave -0319 0791 0054 0238 2605 1809 3391 3941 0966 0976 0814 0718 1906 1377 1582 199 4 4 2 2
Scheme [33]
New Goddard
5 -0479 0936 0082 0240 2599 1858 3391 3929 0967 0975 0814 0720 1933 1429 1590 1994 6 5 6 3
Longwave Scheme [35]
FLG Fu-Liou-Gu
7 -0335 -1981 0023 -0308 2615 3121 3421 4214 0966 0931 0810 0646 1916 2357 1609 2033 5 7 1 6
Longwave [57]
24 RRTMG Fast Version 0247 0379  0.054 0323 2582 1679 3392 4034 0967 0980 0814 0712 1880 1249 1582 2051 1 1 3 5
31 Held'sfci‘;;zw I:“’Il:"a“o“ -11.015 -10.658 -0406 -0797 11947 11.123 3352 3443 0.624 0584 0793 0714 11163 10665 1522 1616 8 8 8 8
GFDL Longwave
99 —0217 0767 0102 0324 2586 1787 3389 4089 0967 0977 0815 0708 1878 1357 159 2064 2 3 7 7

Scheme [58]
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Table 6. Statistical measures and TOPSIS ranking for the Shortwave Radiation simulation group.

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking
A Shortwave
Option Scheme Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec
JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL
1 Dudhia Shortwave .17 5379 0054 0323 2582 1679 3392 4034 0967 0980 0814 0712 1880 1249 158 2051 7 6 3 3
Scheme [59]
GFSC Goddard
2 Shortwave Scheme 0218 0493 0087 0842 2541 1873 3402 4841 0969 0973 0815 0669 1791 1478 1593 2435 6 7 8 8
[35]
3 CAM Shortwave -0012  -0215 0056 0427 253 1711 3380 4206 0968 0978 0815 0703 1801 1300 1582 2139 1 4 4 5
Scheme [56]
RRTMG
4 Shortwave Scheme ~ -0.192  -0116 0079 0574 2518 1760 3.385 4504 0969 0977 0816 0689 1810 1358 1582 2263 5 1 6 7
[33]
New Goddard
5 Shortwave Scheme 0.071 0180 0061 0541 2526 1709 3390 4320 0969 0979 0815 0695 1784 1305 1583 2204 2 3 5 6
[35]
FLG Fu-Liou-Gu
7 Shortwave Scheme ~ -1474 7362 0053 0473 3592 7.884 3406 3540 0930 0685 0813 0726 2754 7369 1589 1700 8 8 2 4
[57]
24 RRJS:SOT“ -0133  -0173 0079 0216 2506 1727 3385 4081 0970 0978 0816 0710 1795 1315 1582 2036 4 2 7 2
99 GF;E:;ZT;;?W‘ 0123 —0356 0043 0153 2573 1725 3390 3583 0967 0978 0814 0746 1.831 1311 1579 1871 3 5 1 1

Table 7. Statistical measures and TOPSIS ranking for the Land Surface simulation group.

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking
. Land Surface
Option Scheme Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec
JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL _ JAN JUL JAN JUL JAN JUL JAN JUL
1 Slayer Thermal -, o) 1g9 —0061 -0541 2526 1709 3390 4320 0969 0979 0815 0695 1784 1305 1583 2204 2 3 3 1
Diffusion [60]
2 Unified Noah Land ) o 0.3356 01108 12449 25308 14518 2.8669 49301 09719 09821 0.8572 0.6684 17834 11292 14464 27321 3 4 1 5
Surface Model [61]
RUC Land Surface
3 Model 62 13032 0.1676 01723 09127 28025 14132 2.8847 45981 09669 09836 08579 0.6874 20471 11056 14654 24994 4 1 4 3
4 Noah-MPLand ;) 0.1795 01175 0829 29321 14624 2.8976 44826 09647 09816 0857 0.6958 21029 11459 14618 24304 5 2 2 2
Surface Model [63]
7 Pleim-XiuLand )¢ 0.6808 02615 1.0901 22981 1934 29817 47504 09729 09648 0852 0.6765 1.6198 14384 15162 2.6388 1 5 5 4

Surface Model [64]
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The final simulation group involved Land Surface parameterization schemes shown in Table 7.
A Land-Surface model predicts soil temperature and soil moisture in layers (4 for Noah and
NoahMP, 6 for RUC, 2 for Pleim-Xiu) and snow water equivalent on ground. It also may predict
canopy moisture only (Noah, NoahMP). The results show that land surface processes strongly affect
temperature simulations which is a conclusion consistent with previous studies [5], while
precipitation remains relatively unaffected. Scheme performances varied, revealing their seasonal
dependence. For winter temperature the Pleim-Xiu Land Surface Model [64] had the best statistical
results, while the scheme performed poorly for summer mean temperature where the RUC Land
Surface Model [62] performed best. The Pleim-Xiu Land Surface Model is a two-layer scheme with
vegetation and sub-grid tiling, while the RUC Land Surface Model predicts soil temperature and
moisture in six layers using multi-layer snow and frozen soil physics. Regarding precipitation, the
Unified Noah Land Surface Model [61] gave the best results for January while performing the worst
for July, where the default 5-layer Thermal Diffusion [60] presented the best results.

Spatial mean bias plots using the best option of all the schemes examined above are presented
for temperature (Figure 3) and precipitation (Figure 4) along with the initial plots using model’s
default options. These plots will allow to assess spatial improvements for each option selected.

The approach followed here greatly increases the model’s prediction ability for temperature
(Figure 3). Initial January simulations show significant deviations from the observed values with
underestimations in central-east Europe, northern and central Italy, Greece and the Iberian up to
three degrees Celsius. Overestimations are located mostly in Scandinavia reaching five degrees
Celsius. Underestimations were also presented for almost all continental Europe in the initial July
simulation reaching 4-5 °C in the Iberian Peninsula, France and Italy. Looking at the final
simulations, it is obvious that almost all of the model's intense failures have disappeared. There is a
convergence of the grid deviations and a general smoothing without severe failures. The confined
regions for model’s underestimation in January are located in central and northern Italy as well as
the far east end of Europe, while model’s overestimation is found again in Scandinavia. July
prediction remains poor in a very small region of central Italy and north Spain with a relatively
significant underestimation, while overestimation is found in south Hungary and in the Balkans,
locally.

There is no particular model deviation trend for the precipitation during January. However,
significant underestimation is noticed locally in central UK, central Italy and Greece (Figure 4) and
overestimation in central and North UK, north Italy, east Scandinavia and some parts of the Balkans.
During July underestimation is noticed in central and Eastern Europe, locally while overestimation
is found in Italy, west Greece and eastern Spain, locally. Although the strategy we pursued had the
improvement of the temperature forecast as a central axis, we can see that the forecast for average
precipitation has also improved to a certain extent.
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Simulation with the
model’s default
options

MP_Physics NSSL 2—
moment Scheme

PBL/Surface Layer
BouLac/MM5
Bougeault-Lacarrere
Scheme (CUMULUS)

Longwave RRTMG
Fast Version

Shortwave New
Goddard Shortwave
Scheme

Land Surface

Pleim-X

i Land RUC Land

Surface
Surface Model
Model

JANUARY

Figure 3. Temperature Mean Bias spatial distribution after each simulation step.
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Option JANUARY JULY

Simulation with the
model’s default options

MP_Physics NSSL
2-moment Scheme

PBL/Surface Layer
BouLac/MM5
Bougeault-Lacarrere
Scheme (CUMULUS) 1

Longwave RRTMG Fast
Version

Shortwave New Goddard
Shortwave Scheme

Land Surface

Unified 5-layer
Noah Land Thermal

Surface Diffusion

Model (default)

Figure 4. Precipitation Mean Bias spatial distribution after each simulation step.
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4. Conclusions

PBL Bougeault-Lacarrere Scheme [29] in cooperation with the MMS5 [30] Surface Layer Scheme
had the best performance in predicting January and July temperature and a moderate rank for
precipitation. The Yonsei University Scheme [36] is the second best choice as far as temperature
prediction is concerned and winter precipitation too. If our strategy had precipitation prediction as
its main axis, then the MRF/MMS5 [48]/[30] combination (option 99) would be the choice we would
have made.

The default Kain-Fritsch Scheme [31] gave the best results as the Cumulus parameterization
scheme similar to the OSAS Old Simplified Arakawa-Schubert [32] ranking but the first was our
shceme of choice as it performed better for January precipitation.

RRTMG Longwave fast version Scheme [33] scored the highest for temperature prediction and
moderately for precipitation. The non-fast version of the RRTMG scheme would be our choice if our
steps were precipitation driven. For shortwave radiation scheme we chose the New Goddard [35]
which had a similar performance with the CAM Scheme [56]. The spatial distribution improvement
of the New Goddard scheme was far better for July temperature prediction establishing it as our
choice. The GFDL Shortwave Scheme [58] had the highest rank in predicting precipitation for both
January and July.

Our final simulation group assessed the effect of the Land Surface model Pleim-Xiu Land
Surface Model [64] performed best in predicting January temperature but poorly for July where the
RUC Land Surface Model [62] produced the best results. As far as precipitation is concerned Unified
Noah Land Surface Model [61] and the 5-layer Thermal Diffusion [60] performed best for January
and July precipitation, respectively. To set up the model for a multiseasonal downscaling study one
should choose the best performing Land Surface model for each season.
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