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Abstract: Nowadays, the Internet of Things (IoT) is a rapidly growing technology that allows to 
integrate digital devices into a network. Using the IoT technology to collect information from a 
variety of Internet connected GNSS receivers provides a unique opportunity to obtain real-time 
information about the special and temporal distribution of ionospheric characteristics with high 
resolution. The ability to create a dense sensor network is achieved through the usage of cheap 
single-frequency GNSS receivers based on the Arduino technology. This approach can be 
implemented to obtain real-time data on the total electron content (TEC) of the ionosphere. The 
determination of the ionospheric delay of the radio signal of GLONASS/GPS satellite and the 
calculation of the ionospheric TEC are carried out directly in the GNSS receiver. The results are 
transmitted over a wireless communication channel via Internet to a cloud server, where maps of 
the TEC of the ionosphere are constructed. 
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1. Introduction 

The emergence and development of the remote sensing method has significantly increased the 
amount of information received about processes occurring in the ionosphere and has opened up new 
areas of research for scientists. One of the characteristics of the ionosphere is the total electronic 
content (TEC). The change in TEC signals various processes occurring in the ionosphere and are 
reflected in subsequent surface events. Method of monitoring the ionosphere is based on the use of 
ground-based registration of radio signals by the global navigation satellite system (GNSS) [1] and 
subsequent determination of the TEC of the ionosphere based on the processing of code and phase 
measurements of radio signal delay [2]. 

2. Experiments 

2.1. Methods 

The determination of the ionospheric TEC by a single-frequency navigation receiver is based on 
the processing of code and phase pseudorange measurements on the same carrier frequency. The 
method is based on finding the difference between two successive measurements of pseudoranges, 
measured by the code and phase of the carrier frequency of the radio signal [3,4]: 

ΔPk − ΔLk = 80.8 f−2[mi(βk) − mi(βk−1)]TECk + ε, (1)
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here ΔPk − ΔLk—is the increment of pseudoranges measured by distance-ranging code and carrier 
phase; TEC—total electron content of the ionosphere; f—frequency of the radio signal; [mi(βk) − 
mi(βk−1)]—the difference of the mapping functions (designed to recalculate the vertical signal delay 
into an slant delay). 

The mapping function can be found from [3]: 

mi(βk) = {1 − [R cos βk/(R + Zmax)]2}−0.5 (2)

here R is the average radius of the Earth, equals to 6,371,221 m; Zmax is the height of the maximum of 
the electron content in the ionosphere, equals to 432,500 m. 

The results of calculating the values of the total electron content of the ionosphere contain noise 
whose values exceed the values of the TEC. To isolate a useful signal and eliminate noise, it is 
advisable to apply filtering. In this case, the Kalman filter was used, which is based on the principle 
of continuous recursive correction of measurements as they arrive [5]: 

TECk = TECk−1 + Kk(ΔPk − ΔLk − HkTECk−1), (4)

Kk = pk Hk/σ2y, (5)

Hk = 80.8 f−2[mi(βk) − mi(βk−1)], (6)

pk = [pk−1 + σ2x]/[1 + (pk−1 + σ2x) H2k σ−2y]. (7)

2.2. Technologies 

To create special low-cost devices for implementaion single-frequency method of ionospheric 
TEC monitoring is possible with the help of the Arduino technology. This is an open programmable 
hardware platform based on the use of printed circuit boards with a microcontroller. To create a 
ground-based receiver, a GNSS module is connected to the card that has access to the Internet via a 
wireless WiFi network. The determination of the ionospheric delay of the radio signal and the 
calculation of the ionospheric TEC are carried out directly in the GNSS receiver. 

Recently, the technology of “Internet of Things” (IoT) is actively developing. IoT is a reliable 
network of devices, with built-in electronics, software and sensors. IoT technology allows one to 
transmit TEC data over a wireless communication channel, independently process them without 
requiring human help. 

3. Results 

3.1. Kalman Filtering 

In the case of processing the total electron content of the ionosphere, the Kalman filter takes into 
account errors in the accuracy of measurements of the range to the receiver and the variability of the 
values of the TEC, minimizing the RMS measurement error. Figure 1a shows the distribution of the 
total electron content as a function of time. Figure 1b shows a graph of the change in the TEC of the 
ionosphere over time, which has been filtered by Kalman using a standard mathematical apparatus. 

3.2. IoT Device for TEC Monitoring 

The developed GNSS receiver prototype consists of a microcontroller ESP8266 and a U-blox 
NEO-M8 module. The module design allows to register binary data of code and phase measurements 
at frequency 1575.42 MHz in the UBX format. Connection to the Internet is via a WiFi wireless 
connection to the nearest access point. The module is powered by a 5 V power supply. Topcon GB-
1000 receiver was also used in our experiments. 
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4. Discussion 

The main task of GNSS is the determination of the coordinates of the receiver processing radio 
signals from navigational satellites [6,7]. The full deployment of GNSS and the improvement of 
algorithms for solving inverse problems of remote sensing significantly improved the methods for 
determining ionospheric parameters. Global monitoring helps to keep a record of the current state of 
the ionosphere [8,9]. 

(a) (b) 

Figure 1. Results of TEC measurements by single-frequency method: (a) Before Kalman filtering;  
(b) After Kalman filtering. 

The use of technology IoT to gather information from multiple GNSS receivers connected to the 
Internet, gives one the unique opportunity to obtain operational information about the distribution 
of TEC with high spatial resolution. The ability to create a dense measuring network is achieved 
through the creation of cheap GNSS receivers. The determination of the ionospheric delay of the radio 
signal and the calculation of the ionospheric TEC are carried out directly in the GNSS receiver. The 
results are transmitted over a wireless communication channel through the global Internet to a 
dedicated server, where maps of the TEC of the ionosphere. 

5. Conclusions 

The use of technology IoT to gather information from multiple GNSS receivers connected to the 
Internet, gives one the unique opportunity to obtain operational information about the distribution 
of TEC with high spatial resolution. The results are transmitted over a wireless communication 
channel through the Internet to a cloud service, where maps of the TEC of the ionosphere can be 
constructed. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

TEC Total Electron Content 
IoT Internet of Things 
GNSS Global Navigation Satellite System 
GPS General Positioning System 
GLONASS GLObal NAvigation Satellite System 
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