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Abstract: The design and implementation of a medical implantable device for bladder monitoring 

is presented. A network of accelerometers is to be implanted in-between the outside bladder 

muscle and the mucous membrane. A pressure sensor is also implanted in this submucosal layer to 

obtain intraluminal pressure readings. The sensor system is powered by an implanted battery and 

provides a wireless communication link for data and control. A smart measurement protocol 

allows the system to be operational for several weeks. The sensors are mounted on a flexible 

printed circuit board that can be elongated up to 250%, to accommodate the natural stretching of 

the bladder organ tissue during filling. 
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1. Introduction 

Hundreds of millions of people worldwide suffer daily from medical conditions affecting the 

bladder and the sensation of urgency, such as overactive bladder syndrome (OAB), urinary 

incontinence (UI) and lower urinary tract symptoms (LUTS). Continuous monitoring of 

physiological parameters of the urinary bladder can provide physicians with valuable new 

information about the inner operation of the bladder and the conditions that cause such bladder 

dysfunctions. More specifically, the possible relation between bladder muscle contractions and the 

sensation of urgency, is still unknown in the medical field. One theory predicts the existence of an 

autonomous function of the bladder [1], where bladder wall contractions play a role in sensing 

bladder volume. To measure bladder function, conventional cystometry methods are used, which 

consist of pressure sensing catheters and flow measurements. However, measuring only one 

pressure point can impossibly present the full picture of localized bladder wall movements, nor can 

it detect small vibrations of the detrusor muscle. Previously, a single high-precision accelerometer 

was placed on the bladder of a sedated, male rat during in vivo tests, and demonstrated the merits of 

inertial sensing [2,3]. In [3] also cadaver tests were performed to show the feasibility of submucosal 

implantation of the sensors. In order to measure bladder activity more closely related to that of 

humans, efforts are directed towards the bladder of Göttingen minipigs. This work presents the 

design choices to make a fully implanted system for measuring accelerations and pressure on 

multiple locations of the bladder of these pigs, while they are awake and naturally void their 

bladders. 
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2. System Design 

The implantable system consists of three subsystems: the sensor system, the wireless 

communication, and the power supply system. The sensor system was designed to continuously 

sample four accelerometers (Bosh Sensortec BMA280) and two pressure sensors (TE Connectivity 

MS5637) with a sample frequency of 50 Hz. There are two 8-bit microcontrollers (Microchip 

PIC12LF1552) that take turns reading one sample of each of the three sensors. They are each 

connected to the communication system and transmitting the data over a shared UART connection 

to it. The connections between microcontrollers and sensors are depicted in the block diagram in 

Figure 1.  

 

Figure 1. Block diagram of the system, consisting of the three subsystems. 

The communication system is the brain of the implant. Its task is to take the UART data from 

the sensor system and transmit it outside of the body to an external receiver. This is achieved using a 

Texas Instruments CC430F5137 microcontroller, using the integrated 433 MHz RF transceiver. A 

single-wire quarter-wavelength antenna was chosen. A full system reset can be triggered by a reed 

switch, activated by an external magnet. 

The power system consists of a 700 mAh thin-cell LiPo battery and a voltage regulator (Texas 

Instruments TPS62740). The integrated load switch of the voltage regulator is used to toggle power 

to the sensor system when required, and is controlled by the communication system. 

The operating system of the communication system can run in three different modes. When no 

measurements are taken, the whole implant is in a very-low power mode. Periodically, after a 

configurable sleep duration, the RF link listens for configuration commands from the external 

transceiver. Power consumption of the listening mode is high, so the occurrence and duration of this 

mode are strongly limited. The third mode is actively sampling the sensors and sending data over 

the RF link. The durations of all three modes can be configured during listening mode. Table 1 

shows measurement results of the current consumption of the system during the different modes. If 

the implant wakes up to listen for incoming commands once every hour for a duration of 60 s, a 

battery of 700 mAh can power the system in sleep mode for more than 1000 h or in continuous 

sampling mode for 100 h. The physician can still communicate with the implant once per hour, or 

whenever required by using the reed switch to reset the system. 
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Table 1. Current consumption in the different operation modes, at a supply voltage of 3.0 V. 

Operation Mode Current Consumption 

Listening mode 16 mA 

Sampling & transmitting mode 6.5 mA 

Low-power mode 0.30 mA 

The sensor system is designed as a 3-armed structure with inertial sensors at the distal ends, 

and one accelerometer in the central part. One of the arms contains a pressure sensor on the 

backside, and a second pressure sensor is used to measure abdominal pressure for reference. The 

communication system and power system are made on a regular PCB that has the same size as the 

battery. The two assembled systems are depicted in Figure 2a. 

The intended location of the sensors on the bladder is shown in Figure 2b, along with the 

communicating system which is implanted in a fat pocket under the skin of the abdomen. The sensor 

system is fabricated in a way so that it can accommodate the periodic stretching of the bladder 

muscle during filling and voiding, up to 250% elongation, without any noticeable obstruction force. 

In order to assess the motion of the bladder wall, the sensors have to be attached to the detrusor 

muscle. Outside fixation onto the bladder wall is rather cumbersome, and, moreover, does not allow 

to measure pressure the internal bladder pressure. Instead, a submucosal location for the sensors is 

used between the detrusor and the mucosa. This ensures a good fixation to a specific location of the 

bladder, and submucosal pressure readings have been shown to correlate well to intraluminal 

pressure [4]. 

  
(a) (b) 

Figure 2. The physical design of the measurement system. (a) The fabricated system. Left: the flexible 

sensor system with three sensing arms. Right: the subcutaneous wireless communicating system. 

Both subsystems are depicted, yet without final biocompatible packaging; (b) The intended way of 

implantation. Only the three tips of the flexible sensing system are implanted submucosally, while 

the rest of the sensor system is on the outside of the bladder wall. The battery and communication 

system is implanted subcutaneously.  

3. Implantation Procedure 

After anesthesia and insertion of a catheter into the bladder, an incision is made in the lower 

abdomen, after which the bladder is exposed. The central part of the sensor system is attached to the 

detrusor with stiches through six holes in the flex print. Then, three cuts are made into the detrusor 

without puncturing the mucosa. Each distal end of the arms of the sensor system is placed in the 

created pocket, each and the detrusor is stitched. After closing the peritoneum, a pocket is made into 

the fat of the abdomen, and the communication system with battery is placed inside. Figure 3 depicts 

several steps taken during a preliminary implantation test. The testing device was a functioning 

communication system with dummy flexible printed circuit boards similar to the present sensor 
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system. The test system could successfully transmit to an external base station. The dummy system 

was explanted from the bladder after five weeks and the animal made a full recovery. 

   
(a) (b) (c) 

Figure 3. Several preliminary results showing feasibility of implantation procedure on a Göttingen 

minipig. (a) Fabrication of a pocket in the fat tissue for locating the communication system; (b) 

Insertion of the communication system into the fat pocket (c) Submucosal position of a flexible 

dummy PCB on the bladder, after 5 weeks of implantation. 

4. Results and Conclusions 

A fully implantable system was designed and fabricated to measure bladder parameters in 

Göttingen minipigs. The system can assess acceleration data in four discrete locations of the bladder 

and read pressure levels inside the submucosal pouch. It can be remotely activated to measure for 

specific durations and has an autonomy of up to several hundreds of hours depending on the 

requirements of measurement duration and frequency. Although no actual acceleration 

measurements are performed yet, preliminary tests have proven the functionality of the 

communication system and the implantation method, hinting for this to be a promising method of 

assessing bladder wall activity. 
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