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Abstract: In this work the highly sensitive molecule recognition performance of a specially designed 
surface enhanced Raman scattering (SERS) substrate was demonstrated. The general inverse 
pyramid structures were modified to be able to perform as cavities in perforated membrane 
applicable for particle and cell filtering, sorting and trapping. In the voids of the gold covered 
substrate size compatible particles functionalised by different molecules were trapped, their SERS 
signal was detected and the different molecules were recognised. 
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1. Introduction 

SERS [1] evolves in close vicinity of metallic nanostructures where the interaction between the 
electromagnetic field of photons and the surface plasmons results in several orders of magnitude 
enhancement of the Raman signal. This effect extremely improves the sensitivity of Raman 
spectroscopy achieving the limit of molecule detection in attomolar (10−18 M) concentrations [2]. 
According to our approach a special size fitted SERS active substrate was prepared to be applicable 
for particle and cell entrapment and highly sensitive detection of molecules immobilized on their 
surface. 

2. Materials and Methods  

Arrays of periodic perforated inverse pyramids were prepared on polished SOI (silicon-on-
insulator) wafers. The 3D structure was shaped by alkaline etching from the front side in the 2 μm 
thick device layer of the wafer by using the appropriate masking pattern. Periodic vertical tapered 
microchannels (see Figure 1) were formed by etching away the back-side handler silicon and buried 
oxide and coated with a 50 nm thick evaporated layer of gold. The resulted geometry was used 
simultaneously as an array of particle traps and a SERS substrate. 
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Figure 1. SEM view of the periodic perforated SERS substrate for particle and cell entrapment. 

3. Results 

Raman spectra of benzophenone were recorded (by a Renishaw 1000 micro-Raman spectrometer 
with Leica DM/LM microscope using 1 micron laser spot size on the sample and 785 nm excitation 
wavelength) on flat silicon and the structured gold surface. The significant amplification by the SERS 
substrate is presented in Figure 2. 

 
Figure 2. Comparison of the Raman signals of benzophenone detected on silicon and the 3D 
structured surface. The broad band in the 900–1000 cm−1 region is arising from the silicon substrate. 

Polystyrene microparticles labelled with different fluorescent molecules (from Sigma Aldrich 
and Spherotech) were dissolved in water and dripped onto the periodic structure. 

Particles having size (2 μm diameter) similar to the period of the 3D structure were entrapped 
on the surface after washing. The lateral distribution of the beads was characterized by fluorescent 
microscopy as presented in Figure 3. The fluorescent molecules were analysed by SERS utilizing the 
plasmonic enhancement by the structured surface of the traps. The definite and sensitive 
differentiation of the molecules immobilized on the polystyrene bead surfaces are presented in Figure 
4, where a huge increase in the Raman signal can be observed on the SERS surface. Taking into 
account that the Raman signal recorded from the beads on silicon substrate arises from the total 
volume of the particles, while SERS occurs only in the few nanometer region close to the SERS 
substrates, it can be concluded that the observed SERS enhancement of two orders of magnitude is 
much higher actually. 
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Figure 3. Fluorescent beads with appropriate 2 μm diameter (Sigma Aldrich—green and 
Spherotech—blue) entrapped in the periodic array of perforated pyramidal structures: multichannel 
fluorescent image (top) and upright optical micrograph (bottom). 

(a) 

Figure 4. Cont. 
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(b) 

Figure 4. Comparison of the SERS spectra recorded on the clean SERS substrate (black) and different 
fluorescent beads on silicon (red) and trapped in the periodic array (blue). SA—Sigma Aldrich (a) and 
ST—Spherotech (b) fluorescent beads, respectively. The broad band in the 900–1000 cm−1 region is 
arising from the silicon substrate. 

4. Conclusions 

The applicability of special perforated periodic 3D structure was demonstrated for simultaneous 
particle (or cell) trapping and extremely sensitive Surface-Enhanced Raman Spectroscopy based 
detection of molecules immobilized on the surfaces of the confined beads. 
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