
       

Proceedings 2017, 1, 550; doi:10.3390/proceedings1040550 www.mdpi.com/journal/proceedings 

Proceedings 

Evanescent-Wave Gas Sensing Using an Integrated 
Thermal Light Source † 
Cristina Consani 1,*, Christian Ranacher 1, Andreas Tortschanoff 1, Thomas Grille 2,  
Peter Irsigler 2 and Bernhard Jakoby 3 

1 CTR Carinthian Tech Research AG, Villach, Austria; Christian.Ranacher@ctr.at (C.R.); 
Andreas.Tortschanoff@CTR.at (A.T.) 

2 Infineon Technologies Austria AG, Villach, Austria; Thomas.Grille@infineon.com (T.G.); 
Peter.Irsigler@infineon.com (P.I.) 

3 Institute for Microelectronics and Microsensors, Johannes Kepler University, Linz, Austria; 
Bernhard.Jakoby@jku.at 

* Correspondence: Cristina.consani@ctr.at 
† Presented at the Eurosensors 2017 Conference, Paris, France, 3–6 September 2017. 

Published: 17 August 2017 

Abstract: The last years showed an increased request for miniaturised, CMOS-compatible gas 
detectors. In contrast to sensors utilizing metal-oxide chemical interfaces, optical strategies are 
potentially faster and more robust. Recently we demonstrated CO2 detection by evanescent-wave 
absorption in the mid-infrared using a combination of an external laser source and silicon 
waveguides based on CMOS technology. We now go one step further and demonstrate the 
feasibility of detection of CO2 down to a concentration of 3% with a low-cost integrated thermal 
source. These results are promising for further technological developments towards on-chip  
mid-infrared photonic gas sensors, and new designs are currently devised to increase the yet 
relatively low sensitivity. 
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1. Introduction 

CMOS-compatible gas sensors are of interest because of their potential use in portable devices 
and in automotive applications. Among the sensing approaches, optical techniques in the infrared 
fingerprint region of the investigated substance are particularly promising because of their high 
selectivity. The possibility to use photonic structures like waveguides for evanescent-wave 
absorption sensing was recently discussed for liquids [1]. Recently we also demonstrated that silicon 
waveguides with sub-wavelength dimensions can be used as sensing units for carbon dioxide 
detection [2]. In the previous experiments, a narrow-band laser beam, tuned to the frequency of 
maximum CO2 absorption, was used as a light source. An external laser source has multiple 
advantages over thermal sources, among them the very narrow emission line and the high peak 
intensity, it is however bulky and expensive. Another approach consists in developing  
quantum-cascade lasers on silicon. Such systems have been recently realized for the first time, with 
emission in a different spectral region [3] and might become an alternative to conventional thermal 
sources in the future. Nevertheless, the ease of fabrication and integration, the long-term stability and 
the low cost of production make integrated thermal emitters the preferable light source for the 
consumer electronics market. 

Here we build on our previous findings by replacing the external laser source with an integrated 
thermal source, whose light is butt-coupled in a short silicon slab-waveguide (Figure 1a). When the 
medium to be sensed comes in proximity of the waveguide, the evanescent tail of the guided field is 
partially absorbed and a decrease in the transmitted light intensity is observed. The intensity decrease 
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depends both on the amount of absorbing substance and on the waveguide parameters through the 
evanescent-field ratio (EFR), i.e., the ratio of the guided field extending outside the waveguide.  

  
Figure 1. (a) Schematic view of the measured structure and of the measurement setup;  
(b) Experimental realization of the gas cell, with access for the electrical contacts and the fiber.  

Here, after experimental determination of the EFR of our structures, we use an integrated emitter 
to measure the transmittance through the waveguide as a function of CO2 concentration and to 
determine the waveguide sensitivity. Our results show the feasibility of CO2 detection with an 
integrated light-source and a silicon slab-waveguide down to a concentration of 3%. 

2. Material and Methods 

The investigated structures are schematically depicted in Figure 1a and are composed of two 
units: the light source and the waveguide. The light source is a simple polysilicon heater. The heater 
is contacted with metal tips and supplied with current pulses of 6–7 mA with a repetition rate of  
33 Hz and a duty cycle of 50%. The sensing unit is a polysilicon slab-waveguide fabricated on a silicon 
nitride membrane and a silicon oxide layer with a standard MEMS process by Infineon Technologies 
Austria AG. The silicon substrate below the waveguide is plasma etched and the silicon oxide is wet 
etched to form a honeycomb structure, in order to decrease the overlap between the evanescent field 
and the substrate materials. The details of the fabrication can be found in reference [2].  

The heater, which lies in close proximity to the waveguide, has front dimensions that match the 
cross-section of the waveguide, and the infrared (IR) light is butt-coupled into the waveguide. On the 
other end of the waveguide, a grating coupler allows for out-coupling the radiation. The grating 
period is designed for an out-coupling angle of 30° with respect to the waveguide normal, and the 
out-coupled light is collected with a ZrF4 optical fiber (Thorlabs, 450 µm core diameter) located at a 
distance of a few tens of microns from the grating surface. The optical fiber conveys the light to the 
detection unit, which is composed of collimation and refocusing optics and a thermoelectrically 
cooled mercury-cadmium-telluride detector (Vigo Systems). The signal readout is performed with a 
lock-in amplifier (Princeton Instruments) and an oscilloscope. An optical bandpass filter, centered at 
4.27 µm with a 180 nm bandwidth at a full-width at a half maximum (Spectrogon), is placed between 
the fiber and the detector. In a future design, a filter structure with similar performances will be 
integrated in the chip design. The optical path between fiber and detector is in air, and a commercial 
CO2 detector monitors the CO2 concentration in the air path. No significant variation in the CO2 
concentration was observed during the measurements. 

The sensor chip is placed in a small gas chamber (Figure 1b) that is continuously flushed with a 
mixture of CO2 (Linde, CO2 4.5) and N2 (Linde, N2 5.0) gas. The chamber has two apertures on the 
top, intended for inserting the electrical connections and the optical fiber, that also function as exit 
path for the gas. The concentration of the two gases in the mixture is controlled by a mass-flow-
control unit, and the gas flows at a speed of 100 mL/min. No change in the measured transmittance 
was observed by reducing the flow speed to smaller values.  
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3. Results and Discussion 

As the waveguide dimensions are smaller than the wavelength of the sensing IR radiation, a 
significant portion of the guided field extends outside the waveguide. This field, which decreases 
exponentially with the distance from the waveguide, is called evanescent field, and can be absorbed 
if the light frequency matches an absorption band of the surrounding medium. The decrease in 
intensity at the out-port of the waveguide can be determined by the Beer-Lambert law = ∙ exp[− ∙ ∙ ∙ ], (1)

where  is the absorption cross-section of the medium,  its concentration,  the optical path. 
The term  is the evanescent-field ratio (EFR), a parameter that takes into account the fact that only 
a fraction of the total field undergoes interaction with the absorbing medium. In our case,  was 
determined by FEM simulations performed with the COMSOL Multiphysics software. For the 
purposes of this work we compare the experimental results with the calculated  for the 
fundamental TE mode,  = 0.101.  

As in our configuration there is a small air gap between the grating coupler and the fiber tip, the 
presence of an absorbing gas in the measurement cell causes absorption of both, the waveguide 
evanescent field and the out-coupled field between grating and fiber. For a quantitative determination 
of the sensor sensitivity, the contribution of the waveguide to the measured transmittance must be 
known. To quantify such a contribution, the change in transmittance between 0% and 100% CO2 is 
recorded at several measured distances between the out-coupling fiber and the grating. As the light 
spectrum, the pathlength in air and the gas concentration are known, the contribution of the change in 
transmittance due to the air gap is completely determined, and the contribution due to the waveguide 
can be extracted. Comparison between experimental results and the modeling based on the  
Beer-Lambert law allows us to determine the value of  for our structures. The best agreement with 
the experiment is obtained for = 0.027. Thus, according to our results, the measured evanescent field 
ratio is between 3 and 4 times smaller than the simulated value for the fundamental TE mode.  
We exclude that the discrepancy arises from excitation of higher order modes in the waveguide, as 
those are less confined and thus characterized by higher EFRs than the fundamental mode [4].  
The origin of this discrepancy is currently under investigation. It might be related to a difference 
between the refractive indexes used for the simulations and the actual material parameters, or to small 
differences in the height of the fabricated waveguide as compared to the design.  

Figure 2 shows the (normalized) light intensity through the waveguide measured as a function 
of the concentration of CO2 in the measurement cell (red solid line). For each concentration, the sensor 
chamber was first flushed 6 min with pure N2 and then flushed with the desired N2-CO2 mixture for 
additional 6 min. A small shift in the baseline was observed during the measurement and modeled 
linearly (dark dotted line). The experimental results show a very good agreement with the expected 
signal (squares), calculated using the value of  determined above. It is also instructive to separate 
the waveguide contribution (circle) from the contribution of absorption in the gap between 
waveguide and fiber (triangles). The former reflects also the change in transmission that can be 
measured with the present structures if the grating coupler is replaced by an integrated detector. 
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Figure 2. Measured signal at the detector (red solid line) for the gas concentrations indicated in the 
plot. Triangles and circles are the change in transmittance (calculated according to the Beer-Lambert 
law) due to absorption in the air gap and of the waveguide evanescent field, respectively. Square 
symbols show the calculated total signal accounting for both effects 

4. Conclusions 

In conclusion, we present an experimental characterization of a silicon slab-waveguide designed 
for mid-IR operation. After experimental determination of the evanescent field ratio, we demonstrate 
quantitative CO2 detection down to a concentration of 3%, by using an integrated thermal emitter as 
a light source. The integrated source has a higher noise than a laser and, due to the larger bandwidth 
of the emitted radiation, the effective mean absorption coefficient of the gas is lower. Nevertheless, 
by increasing the integration time by a factor of 10, it was possible to detect a comparable 
concentration of CO2 as previously measured with a laser source [2]. Therefore, we conclude that in 
this first demonstrator the detection limit is set by the waveguide sensing unit, and new designs are 
under investigation increase the sensor sensitivity. In total, these results show a promising step 
forward for the development of chip-based fully-integrated photonic gas sensors. 
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