

Proceedings 2017, 1, 219; doi:10.3390/IS4SI-2017-04029 www.mdpi.com/journal/proceedings

Proceedings

Symbolic Information in Computing Devices †

H. Paul Zellweger

ArborWay Labs, Rochester, MN 55901, USA; pz@arborwaylabs.com
† Presented at the IS4SI 2017 Summit DIGITALISATION FOR A SUSTAINABLE SOCIETY, Gothenburg,

Sweden, 12–16 June 2017.

Published: 9 June 2017

1. Introduction

Intuitively, 0’s and 1’s on paper are different from their electronic counterparts on the computer.
On paper, their representations are flat and motionless. On the computer, zeroes and ones travel at
blinding speeds in 3-dimensional space. Regardless of the media, STEM research treats all zeroes and
ones the same. The author considers this oversight not only a critical loss of information but a
fundamental reason why the true limitations of mechanical computing remain unknown. He
attributes this conflation of digital symbols in different media on two critical articles that go off in
two different directions. They are: (1) Claude Shannon’s theory of communications that introduces
the bit as a unit of information (p. 380, [1]), and (2) Newell and Simon’s Physical Symbol System
Hypothesis (PSSH) that promotes AI by arguing that digital symbols create new expressions by
symbolic manipulation [2]. The author believes that the mathematics in Shannon’s article casts a long
shadow over the Newell and Simon’s hypothesis, in spite of the fact that their article addresses the
key feature of 0’s and 1’s on the computer—they are interactive.

In his 1948 article, Shannon makes it clear that communication signals represent physical values.
He identifies them as ‘bits,’ a portmanteau of Binary Digits. His description of them is quite similar
to 0’s and 1’s printed on paper, flat and 2-dimensional. He goes on to point out that bits form larger
units of information to represent symbols. In the 1960’s, Newell and Simon argue that the physical
symbols on a computer “operate on expressions to produce other expressions” (p. 116, [2]). They
credit dynamic memory structures for making this possible. However, their description of symbolic
manipulation is limited to a high-level discussion of programming languages like LISP. Regrettably,
fifty years later this superficial understanding of symbolic manipulation remains unchanged [3].

To investigate the deep structure of physical symbols, the author turns to a newly discovered
uniform pattern of data in the RDBMS. It is called the Aleph data relation [4]. Like Borges’ namesake
short story, the Aleph and its models of parent-child relations are a portal into the digital space of
mechanical computation. In architectural terms, it is a design pattern. It is self-similar to the tree
structure and, like a fractal, it has scaling symmetry. These features enable decision trees to emerge
from relational data by recursive algorithms. From an engineering perspective, the Aleph is a data
object that is analogous to objects in object-oriented programming languages. In a file or data stream,
the spatial proximity of the parent to the child translates its physical symbols into an IF-THEN
relationship. Child data always comes immediately after a parent. And finally, in terms of
mathematical generalizations, the Aleph is an abstract object whose spatial embodiment of logical
implication explains why a hardware address always implies its content.

Mark Burgin’s named set theory [5], a form of pure mathematics, lays the groundwork for the
Aleph’s discovery. Applications of this mathematical theory resulted in an extensive system of nested
models that represent tree structures. These models program relational data to self-reference their
own data symbols. They transform relation data into menu data for “The Database Taxonomy”
decision tree interface [6]. End-users navigate down its data topics to pinpoint information managed
by the database. In effect, Burgin’s models turn the database and its data content inside out. They
also reduce its complexity and detail. Accordingly, they align two notoriously complex systems,
Codd’s relational model and the von Neumann machine, to unify their high-level components. This

Proceedings 2017, 1, 219 2 of 6

system of models creates a cross-section of the database on a computer that penetrates deep down
into the hardware details. One model highlights how the database system relies on logic gates for
pattern matching on input and indirect addressing for output. Another model in the system shows
how the same data symbol alternates between these two I/O operations. Subsequently, Burgin’s
models reveal how symbolic manipulation occurs at a deeper level of 0’s and 1’s. The author identifies
this more in-depth view of digital symbols as meta-symbols: physical-values and constructed-types
[6]. The paper focuses on the relationship between the Aleph data relation and its physical symbols
to explore the deeper nature of zeroes and ones on the computer.

To study the relationship, the author draws on three cognitive tools. First, he relies extensively
on Mark Burgin’s theory of named sets because he believes, it brings about a radical simplification of
ordered complexity (According to Warren Weaver, there are two types of complexity: ordered and
chaotic). Second, he employs Herbert A. Simon’s The Science of the Artificial, and its use of the interface
metaphor (pp. 6–12, [7]), to analyze the exterior/interior views of artifacts that include mathematical
expressions. And finally, he deploys the container metaphor used throughout database literature to
bridge the widely accepted view of physical symbols, as values, with an overarching view of their
addressability as the content of constructed 3-dimensional containers.

2. Burgin’s Mathematical Theory

Burgin’s named set theory applies the rigor and precision of mathematics to the study of names.
Research in this area goes back to Frege’s distinction between reference and meaning. To adapt this
idea for structures today, Burgin adds a third component, a connection between a reference and its
meaning. He calls this triadic structure the fundamental triad (p. 40, [5]).

This formal study of names centers on structures, in general, and on mathematical structures, in
particular. All mathematical structures conform to a well-defined triplet expression. When a
mathematician discovers something new, he or she intuitively treat this triplet as a reference
according to Frege. Drawing on the fundamental triad, Burgin makes the connection between this
triplet and its mathematical name explicit. With this new understanding in place, the analysis of any
combination of names, references and their meanings in mathematics is possible. Accordingly,
Burgin has undertaken a decades-long investigation of mathematical structures to study their
patterns for new levels of abstraction.

For example, Burgin notes a prevalence of chaining patterns in the mathematical structures of
advanced algebraic systems (pp. 445–412, [5]). In this study of physical symbols, named set theory
predicts that similar chaining patterns exist in other highly abstract systems, such as the relational
data model. The B-Z chain presented at the end of the next section confirms his conjecture.

3. The Aleph Data Relation

This mathematical investigation of physical symbols begins with the discovery of Aleph data
relation. It is based on implementing Burgin’s algorithmic named set (p. 42, [5]). This theoretical
structure consists of an algorithm, an input set, and an output set. In notation, A = (X, A, Y) where A
is an algorithm, X is an input set, and Y is an output set. In the database, the implementation of the
algorithm named set allows the author to study the mapping between input and out attributes at the
data level. He calls this mathematical structure, listed below, a binary attribute relation or BAR,

(Ainput, rules, Boutput),

where Ainput and Boutput are attributes in table R, and the rules are a wff SQL SELECT statement.
The author calls this SQL SELECT a BAR query. Its details, listed below, explicate how data

condition v, a known input data, self-references Ainput’s domain to fetch unknown output from Boutput.
The algebra in this expression allows output data t to include one or more values, regardless of the
database application.The Aleph takes shape outside of the query interface by the mapping input v to
its output t. In effect, it is a mechanically constructed parent/child data relation.

Proceedings 2017, 1, 219 3 of 6

(SELECT Boutput FROM R WHERE Ainput = v) → t

where v Ainput; t Boutput; and ((Ainput R) ∧ (Boutput R)).
The overall simplicity of BAR query creates an opportunity to view the deeper structure of

physical symbols. Its straightforward layout highlights a division of labor between input and output.
By viewing these channels as containers, we can create a conceptual metaphor that allows us to
telescope down to the hardware and bounce back up with output data. For instance, with input = v,
data signal v flows down to logic gates in the CPU to conduct pattern matching on Ainput components
in the current dataset. When v is equivalent to a component value, the database selects the record for
the new dataset. On output, data t rises upward from the newly selected dataset in line with address
locations assigned to Boutput’s record components. Thus, the computer relies on both the value of each
data symbol as well as on its attribute container.

In the next Burgin model, the B-Z chain aggregates the Aleph to generate menu data for a
decision tree. The recursive algorithm that generates this tree structure can be found in [4]. In the
database, the B-Z chain models a data network. Each link in the chain depicts a BAR that models the
Aleph. The B-Z chain aggregates each Aleph data relation by overlapping and by self-referencing the
next link. At the data level, output from one link represents input for the next link in the chain,

(A, A) (A, B) (B, C).

In a complex chain, the data flow includes keyed attributes in adjacent links that connect one
table to another. At the data level, it reveals a second Aleph hidden between two related tables.

4. The Aleph’s Upward Ascent

The Aleph data relation exists naturally throughout the database. In the decision tree interface,
it is a design pattern that ascends from the database table upward to data topics displayed in its GUI.
To investigate this upward ascent, the author constructed the conceptual model in Table 1 below to
identify its transition points.

Table 1. The Aleph’s Upward Ascent

Proceedings 2017, 1, 219 4 of 6

In Table 1 above, the ascent of relational data from the table to the decision tree passes through
four states:

(1) At the bottom row, we start off with data in the database table.
(2) Moving up one row from the bottom, we construct the Aleph data relation outside of the query

interface.
(3) In the third row of Table 1, the B-Z chain depict nested Aleph data objects in menu data files.
(4) And finally, in the top two rows, the decision tree displays the Aleph data relation.

In these four states, the decision tree HCI and the SQL SELECT represent two different type of
interfaces. In keeping with Simon’s study of interfaces, the table depicts the exterior and interior
views of each one. The transition from one view to other is particularly noteworthy with the SELECT
interface because here Simon’s and Burgin’s theoretical approaches overlap. The SELECT’s exterior
is a black box process. In Burgin’s theory, it is an algorithmic named set consisting of input and output
(p. 42, [5]). According to both theories, its interior view is a white box process. The Aleph’s Graphic
Representation, in column four, shows how the SELECT on physical symbols operates in a set-theoretic
manner that demonstrates the enduring power of Codd’s set metaphor.

In Table 1, the analysis of the role of physical symbols goes bottom-up. It also starts with Burgin’s
Models in column one and proceeds in a left-to-right direction, row by row. All of Burgin’s models
implicitly represent the Aleph in terms of physical symbols. These models serve as blueprints for the
Digital Constructions in column two that transport the Aleph data object through digital space. Before
the Aleph, the database table contains only application data. With Burgin’s SELECT statement, the
Aleph emerges as a figure rising from this background data. In the next table row, the B-Z chain
predicts the open hierarchical data structure (OHDS). It also highlights the format for storing nested
Aleph objects in files and memory. When the decision tree displays these menu data files, the B-Z
chain is general enough to predict yet, another abstract structure, the k2H hyper-graph that describes
nested Aleph objects.

While Burgin’s models are general predictors, the Aleph’s Graphic Representation in column three
depicts this object in a more detailed fashion. Consequently, each depiction in this column is different
because each one reflects its digital setting and/or state. In column five, however, a more profound
pattern of information unfolds. When each graphic representation is modeled by its Physical Symbols
and—according to their hierarchical containment—a uniform models emerges. This model highlights
the invariant layout of its physical symbols that indicates that these 0’s and 1’s are held together by
a deeper, underlying mathematical bond that transcends time and space.

5. Physical Symbols and Meta-Symbols

In Table 1, a mathematical connection holds all of the Aleph models together. The author
believes this relationship is grounded in the logical structure of physical symbols. In column five, the
invariant pattern of models makes this point clear. Therefore, the author reasons that all 0’s and 1’s
on the computer possess a deeper logical pattern that is precise and uniform.

However, today’s understanding of physical symbols is limited to a single dimension: each bit
or string of bits only represent numeric values. In database research, these values are widely
recognized as the source for linking tables together (p. 21, [8]). Recent discoveries in physics add
support to the physicality of symbols on the computer [9]. But the author believes that this single
dimension of digital symbols is not a complete or balanced view. He contends that these symbols
represent a more detailed system that has a precise order in a mathematical sense.

And so, the author argues that physical symbols on a computer are composed of deeper, sources
of information. They include mechanical sources of information that shed light on how the computer
system manipulates its digital symbols. He believes that the logical relationship between its signals
and symbols is bi-conditional. The system treats both on a casual, mechanical basis. For any possible
signal, the system always determines the same symbol. The same holds true when converting from
symbols to signals. But the speed of these transformations makes direct observation of this
mechanical phenomena virtually impossible. Therefore we can investigate these details by applying

Proceedings 2017, 1, 219 5 of 6

pure mathematics, such as Burgin’s named set theory, to model these systems and to draw inferences
from their abstractions. Subsequently, the author relies on the integrity of this mathematical system
to establish new, credible levels of abstraction that permit us to observe these details as sources of
new information.

Based on the predictive power of Burgin’s system of models, and on the mathematical certainty
of mechanical computing, the author contends that all physical symbols on the computer are
composed of two meta-symbols: (1) physical-values and (2) constructed-types. The author believes
that these two aspects of digital symbols enable computer systems to treat its 0’s and 1’s, in a linguistic
fashion, as types and tokens.

The physical-value of each symbol enables the computer to treat all strings of 0’s or 1’s as a
“type”. This meta-symbol allows the system to differentiate one form of signal/symbol from another
by using logic gates for pattern matching.

In contrast, a symbol’s constructed-type allows the computer to treat each token as the content
of a container. Some of these containers are constructed by hand, like table attributes, while others
emerge at runtime, such as dynamic addressing. Both types of containers scale up and down the
computer system in a hierarchical fashion that is unbounded. At the bottom of this virtual system,
the hardware surface serves as a container for all containers. Each virtual address establishes a
container, one that differentiates one bit from every other bit on the machine. And so, this simple
address/content relationship makes each string of 0’s and 1’s unique. It also underscores the logical
power of indirect addressing: a known address always implies knowledge of its content, even when
its actual value is unknown.

At higher levels of the system, a constructed-type could be a table attribute in a database, a
database table, or even the database itself. With these nested containers, one can easily see how a
database differentiates “NY” the CITY from “NY” the STATE as two different “NY” tokens based on
their attribute membership or constructed-types.

6. Discussion

The ability of mathematics to distal new details by abstraction is crucial to the discovery of new
information. The paper presents a system of mathematical models based on Mark Burgin’s named
set theory. These models penetrate deep into the logical structure of physical symbols on the
computer to reveal new information about their properties. These models not only uncover a hidden
parent/child data pattern in the database called the Aleph they also show how decision trees can
emerge from these patterns. With this scientific evidence, and with the certainty of mechanical
computing, the author proposes a theory about digital symbols on the computer. This theory holds
that digital symbols consist of two meta-symbols: (1) physical values; and (2) constructed-types. It
also holds that mechanical computing employs these two properties to manipulate symbols and to
differentiate one symbol from another, even when two such symbols are visibly identical. The author
argues that these meta-symbols enable computing systems to manage their digital content in a
linguistic fashion that differentiates types from tokens. He believes this new understanding is a
balanced view of physical symbols that unifies Shannon’s understanding of their numeric values
with PSSH’s focus on their dynamic structures and addressing.

To develop this theory of physical symbols, the author considers Marshall McLuhan’s advice to
study the media of digital computation. The aim here is to undercover the nature of its dimensions.
Next, he intends to use mathematical modeling to investigate symbol grounding on these machines.
The objective of this research is not only to survey and chart the logical boundaries of physical
symbols but to differentiate them from the purely abstract symbols in the mind’s eye. To make this
distinction, the author intends to revisit the philosophic issues raised by Ernst Cassirer and his
student Susan Langer regarding the difference between signals and symbols. He also plans to
investigate how symbolic content emerges from an artifact compared to its emergence in natural
phenomena as explained by [10].

Conflicts of Interest: The authors declare no conflict of interest.

Proceedings 2017, 1, 219 6 of 6

References

1. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423.
2. Newell, A.; Simon, H.A. Computer science as empirical inquiry: Symbols and search. ACM Commun. 1995,

19, 113–126.
3. Nilsson, N.J. The Physical Symbol System Hypothesis: Status and Prospects. In 50 Years of Artificial

Intelligence; Essays Dedicated to the 50th Anniversary of Artificial Intelligence; Lungarella, M., Iida, F.,
Bongard, J., Pfeifer, R., Eds.; Springer-Verlag: Berlin, Germany, 2007; pp. 9–17.

4. Zellweger, P. Tree Visualizations in Structured Data Recursively Defined by the Aleph Data Relation. In
Proceedings of the 20th International Conference Information Visualization (IV’16), Lisbon, Portugal, 19–
22 July 2016; pp. 21–26.

5. Burgin, M. Theory of Named Sets. Hauppauge; Nova Science Publishers: New York, NY, USA, 2011.
6. Zellweger, H.P. A Knowledge Visualization of Database Content Created by A Database Taxonomy. In

Proceedings of the 15th International Conference on Information Visualization (IV 2011), London, UK,
12–15 July 2011; pp. 323–328.

7. Simon, H.A. The Sciences of the Artificial, 3rd ed.; MIT Press: Cambridge, MA, USA, 1998.
8. Atzeni, P.; Ceri, S.; Paraboschi, S.; Torlone, R. Database Systems, Concepts, Languages and Architectures;

McGraw-Hill Publishing Company: Maidenhead, UK, 2000.
9. Be´rut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental

verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187–190.
10. Touretsky, D.; Pomerleau, D. Reconstructing Physical Symbol Systems. Cogn. Sci. 1994, 2, 345–353.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).

