Proceedings of the 2nd International Conference on Natural Products for Cancer Prevention and Therapy, Kayseri, Turkey
8–11 November, 2017
npcpt2017.org/
Abstract

Anticancer Potential of Flavones †

Randolph R. J. Arroo 1,* Didem Şöhretoğlu 2, Demetrios A. Spandidos 3 and Vasilis P. Androutsopoulos 3

1 Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
2 Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
3 Department of Toxicology, Medical School, University of Crete, Crete GR-74100, Greece
* Correspondence: rrjarroo@dmu.ac.uk
† Presented at the 2nd International Conference on Natural Products for Cancer Prevention and Therapy, Kayseri, Turkey, 8–11 November 2017.
Published: 17 November 2017

Abstract: Many papers have been written on the anticancer properties of dietary flavonoids, and a range of potential mechanisms of action of flavonoids. However, most dietary flavonoids—notably polyphenolic flavonoids—have very poor ADME properties, and the levels necessary to stop growth of tumour cells cannot be sustained in a human body through dietary intake alone. At present no flavonoid based drugs are clinically used in cancer therapy. Thus, whereas epidemiological and pre-clinical data seem to indicate a high potential for flavonoids, from the point of view of the pharmaceutical industry and drug developers, they are considered poor candidates. The flavones—which constitute a subgroup of the flavonoids—show some structural analogy with oestrogen and are known to interact with human oestrogen receptors, either as agonist or as antagonist. They are classed as phytoestrogens, and may play a role in cancer prevention through a mechanism of action possibly similar to that of the clinically used medication tamoxifen. Flavones are abundantly present in common fruits and vegetables, many of which have been associated with cancer prevention. Their phytoestrogen activity makes that they can assert their biological action at concentrations that are realistically achievable in the human systemic circulation.

Keywords: flavones; phytoestrogen activity; apigenin

Figure 1. Structural similarity between estradiol and the flavone apigenin.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).