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Abstract: The rhizospheric microorganisms of agricultural crops play a crucial role in plant growth
and nutrient cycling. In this study, we isolated two Streptomyces strains, Streptomyces sp. LM32
and Streptomyces sp. LM65, from the rhizosphere of Vitis vinifera L. We then conducted genomic
analysis by assembling, annotating, and inferring phylogenomic information from the whole genome
sequences. Streptomyces sp. strain LM32 had a genome size of 8.1 Mb and a GC content of 72.14%,
while Streptomyces sp. strain LM65 had a genome size of 7.3 Mb and a GC content of 71%. Through
ANI results, as well as phylogenomic, pan-, and core-genome analysis, we found that strain LM32
was closely related to the species S. coelicoflavus, while strain LM65 was closely related to the species
S. achromogenes subsp. achromogenes. We annotated the functional categories of genes encoded
in both strains, which revealed genes involved in nitrogen and phosphorus metabolism. This
suggests that these strains have the potential to enhance nutrient availability in the soil, promoting
agricultural sustainability. Additionally, we identified gene clusters associated with nitrate and nitrite
ammonification, nitrosative stress, allantoin utilization, ammonia assimilation, denitrifying reductase
gene clusters, high-affinity phosphate transporter and control of PHO regulon, polyphosphate, and
phosphate metabolism. These findings highlight the ecological roles of these strains in sustainable
agriculture, particularly in grapevine and other agricultural crop systems.

Keywords: Streptomyces; nitrogen metabolism; phosphorus metabolism; grapevine; sustainable
agriculture; phylogenomic analysis; rhizospheric bacteria; core-genome

1. Introduction

The rhizosphere, which is the layer of soil surrounding plant roots, serves as an
ecological niche where microorganisms interact with the host [1]. These interactions
include bacteria that play a vital role in nitrogen and phosphorus metabolism, which are
essential for soil health, productivity, and plant growth. These bacteria are involved in
various processes such as denitrification, nitrate, and nitrite ammonification, as well as
activities related to phosphate uptake, regulation, and utilization. They have the capability
to efficiently utilize and recycle compounds, thereby enhancing plant development, nutrient
uptake, and soil quality [2].
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The grapevine (Vitis vinifera L.) is a perennial woody plant that plays a vital role in the
global economy and society. Vineyards span approximately 7.5 million hectares worldwide
and yield around 35.9 million tonnes of wine. In Mexico, viticulture and wine production
have become a significant economic activity, resulting in an annual wine production of
36 million liters and involving the cultivation of approximately 73,000 tons of grapes [3].

Several studies have been conducted on the microbial communities associated with
grapevines, specifically focusing on the microbial communities found in the endosphere,
phyllosphere, and rhizosphere [4]. The rhizosphere is of particular importance due to the
crucial role microorganisms play in soil biogeochemical processes, such as nitrogen and
phosphorus metabolism [5,6]. The presence and activity of bacteria in the rhizosphere
are essential for sustainable agriculture as they help reduce reliance on synthetic nitrogen
and phosphorus fertilizers, thereby mitigating the negative environmental impacts asso-
ciated with their production and usage, including water pollution and greenhouse gas
emissions [7]. The Streptomyces bacterial genus plays a vital role in microbial dynamics
and plant health. It promotes plant growth by participating in phosphorus and nitrogen
metabolism [8]. Furthermore, it contributes to plant health by producing antimicrobial
compounds [9,10] and other bioactive compounds involved in biological control [11–13].
Microbial nitrogen and phosphorus metabolism are crucial processes in the dynamics
of biogeochemical cycles. Certain microorganisms possess the unique ability to convert
nitrogen and phosphorus into chemically assimilable forms for living organisms. This
process not only enhances plant growth but also influences soil fertility, thereby impacting
the productivity and sustainability of terrestrial ecosystems [14,15].

In this context, genomic analyses applied to the study of biological nitrogen and phos-
phorus metabolism by Streptomyces spp. have provided a comprehensive understanding of
the molecular mechanisms involved. These analyses have opened up new possibilities for
enhancing agricultural sustainability and managing soil fertility [16–18]. These advanced
tools enable a more precise comprehension of plant–microorganism interactions and offer
opportunities to optimize the utilization of this crucial biological function for the benefit of
agriculture and ecosystem health. Therefore, the objective of this study was to analyze the
whole genome of two strains of Streptomyces spp. that were isolated from the rhizosphere of
grapevines. To achieve this objective, we performed whole genome sequencing, assembly,
annotation, phylogenomic analysis, as well as pan- and core-genome analysis to identify
closely related species of Streptomyces. Additionally, gene functional annotation analysis
was conducted to infer the functional capabilities of these Streptomyces strains in nitrogen
and phosphorus metabolism.

2. Materials and Methods
2.1. Isolation of the Bacterial Streptomyces spp. Strains

The bacterial strains used in this study were obtained from a previous study, where
a total of 122 bacteria were isolated from the rhizospheric soil of Vitis vinifera in Sacra-
mento, Chihuahua, Mexico (28◦50′04.9′′ N, 106◦15′25.1′′ W). They were selected based
on their demonstrated biological activities implicated in the production of agriculturally
significant compounds. Soil samples were collected at a depth of 15–20 cm in the vineyard
rhizosphere, and serial dilutions were streaked on Ashby mannitol agar. After 5–7 days of
incubation at 30 ± 2 ◦C, individual bacterial colonies were further purified. The isolates
were cryopreserved in 15% glycerol and stored at −80 ◦C.

2.2. Genomic DNA Extraction, Library Preparation, and Sequencing

Total DNA was extracted from each sample using a ZymoBIOMICSTM DNA Miniprep
Kit (Zymo Research, Irvine, CA, USA) following the manufacturer’s instructions. The
DNA quality and quantity were determined by using a NanoDrop spectrophotometer
(Thermo Scientific, Wilmington, DE, USA) based on its A260/280 ratio, and observed
in a 1.0% agarose gel electrophoresis. For genomic library preparation and sequencing,
the total DNA was shipped to Illumina (San Diego, CA, USA). Briefly, 100 ng of total
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DNA was processed following instructions of Illumina DNA prep (M) tagmentation kit
(#Cat. 20018705). Because many samples were run in the same flow cell, specific indexes
were added to each DNA library with IDT for Illumina DNA/RNA UD Indexes Set A
Tagmentation (#Cat. 20027213). Library concentration was quantified with Qubit dsDNA
HS Assay kit (Thermo Fisher Scientific, Waltham, MA, USA) and the integrity of DNA
libraries was assessed with the Bioanalyzer 2100 Agilent (NGS 1-6000 kit). Libraries were
sequenced in an S4 flow cell in a 2 × 150 bp strategy on an Illumina NovaSeq 6000 sequencer
(Illumina Inc., San Diego, CA, USA) [19].

2.3. Genome De Novo Assembly and Annotation

Illumina raw sequence reads of Streptomyces sp. strain LM32 and Streptomyces sp.
strain LM65 were processed by trimming and filtering using a 4 bp Q20 sliding window in
Trimmomatic v.0.39 [20]. To assess the quality of the obtained reads, FastQC v.0.11.9 [21]
was employed and a de novo assembly was performed using SPAdes v.3.14.1 [22]. The
assembled genomes were then evaluated using QUAST v.5.1.0rc1 [23]. To predict gene
clusters related to nitrogen and phosphorus metabolism, the resulting complete genomes
were annotated using Prokka v.1.14.5 [24] and RASTtk v.1.3.0 [25]. Finally, the gene function
annotations were visualized as arrow diagrams using the ggplot2 library [26] and the
gggenes library [27] in RStudio [28].

2.4. Genomes Selection and Phylogenomic Analysis of Streptomyces spp.

In order to conduct a comprehensive analysis of Streptomyces genomes, 1–4 genomes
were downloaded for each species from the NCBI database (Table S1), resulting in a total
of 307 genomes. Additionally, the genome of Escherichia coli str. K-12 substr. MG1655
(NC_000913.3) was downloaded as a reference outgroup for the phylogenetic tree. All
statistical data (n = 308) were obtained using QUAST v.5.1.0rc1 [23]. Subsequently, a
phylogenomic analysis was performed on 310 genome sequences, including the Streptomyces
strains from this study, using the Virtual Analysis Method for Phylogenomic Fingerprint
Estimation (VAMPhyRE v.2020; https://biomedbiotec.encb.ipn.mx/VAMPhyRE accessed
on 5 January 2024), following the procedure described by Muñoz-Ramírez et al. [29]. Briefly,
VAMPhyRE was used to determine Virtual Genome Fingerprints (VGF) from the bacterial
genomes in our dataset, including both complete and draft forms. Virtual hybridization
was conducted by identifying hybridization sites using a collection of 15,264 VAMPhyRE
probes, each 13 nucleotides long (VPS-13), targeting both the positive (+) and negative (−)
strands of the genomes, allowing for a single mismatch. Each genome’s VGF is constituted
by the assemblage of hybridization sites. Genomic distances were calculated by comparing
all pairs of VGF and determining the number of shared homologous sites, resulting in a
distance matrix using the methodology described by Nei and Li [30]. To ensure that only
homologous sites shared within the distance metrics were considered, an extending-match
technique was employed, where seven bases at both ends of the sites were extended,
and homologous sites were determined by a minimum criterion of 27 base matches. The
phylogenomic tree was constructed using the Neighbor-Joining method with the software
MEGA 11 [31], and further refined and annotated using iTOL v.3 [32].

2.5. Average Nucleotide Identity Analysis

To gain a deeper understanding of the similarities between whole genomes and to
determine whether two genomes share genomic identities above or below the species
threshold, an Average Nucleotide Identity (ANI) analysis was performed. This analysis
involved comparing Streptomyces sp. strain LM32, Streptomyces sp. strain LM65, and other
reference strains of Streptomyces available in the NCBI database. Correlation indexes of
tetra-nucleotide signatures (Tetra), ANIm, and FastANI values were calculated using the
JspeciesWS web service [33] and FastANI [34]. The representation of visual reciprocal
mappings between two pairs of Streptomyces genomes was plotted with a Python script
(visualize.py) [35]. The ANI value, based on whole genome sequences, has been widely

https://biomedbiotec.encb.ipn.mx/VAMPhyRE
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accepted as a reliable method for determining whether organisms belong to the same
species, with a typical threshold of ≥95% ANI [34].

2.6. Pan- and Core-Genome Analysis

An analysis of the pan- and core-genome was conducted for the genomes within
the same cluster of strains LM32 and LM65. In the case of Streptomyces sp. strain LM32,
the genomes of S. coelicoflavus strains DBR11, NBC_00465, NBRC 15399, and S3018 were
included in the analysis. Conversely, for Streptomyces sp. strain LM65, the analysis was
performed on the genome of S. achromogenes subsp. achromogenes NRRL B-2120 and in-
cluded the genomes of S. achromogenes strains W4I19-2 and B2I10. Initially, annotation of
the genomes was conducted using Prokka v.1.14.16 [24] using an e-value of 1 × 10−12. The
resulting GFF files from this annotation were then employed for the pan-genome calcula-
tion, carried out using the Panaroo pipeline v.1.4.2 [36] in ‘strict’ mode, with a 90% identity
threshold for protein sequences and a 75% coverage cut-off for gene length. Subsequently,
the presence and absence files generated were used to calculate a Venn diagram utilizing
the ggVennDiagram library [37] in RStudio [28].

3. Results and Discussion
3.1. Genome De Novo Assembly

A total of 21,874,730 and 41,761,631 paired-end reads were obtained for Streptomyces
sp. strain LM32 and Streptomyces sp. strain LM65, respectively, after processing the high-
quality reads. The coverage for strain LM32 was approximately 70×, while for strain LM65
it was approximately 148×. The genome size and GC content for strain LM32 were 8.1 Mb
and 72.14%, respectively, while for strain LM65 they were 7.3 Mb and 71%. The quality
of the assemblies was assessed using the QUAST software v.5.1.0rc1, resulting in an N50
value of 150,500 and L50 of 18 for strain LM32, and an N50 value of 164,678 and L50 of 16
for strain LM65. Streptomycetes have unique genomic characteristics, including a lengthy
linear chromosome ranging from 6 to 12 Mb, and encoding 5300 to 11,000 proteins, which
distinguishes them from other bacterial genera [38,39]. In terms of annotation, a total
of 7251 coding sequences (CDS), 83 tRNA, and 8 rRNA were identified in strain LM32,
whereas in strain LM65, a total of 6440 CDS, 99 tRNA, and 4 rRNA were identified. The
genome characteristics of both LM32 and LM65 strains are summarized in Table 1.

Table 1. Genome characteristics of Streptomyces sp. strain LM32 and Streptomyces sp. strain LM65.

Genome Characteristics LM32 LM65

Genome size (Mb) 8.1 7.3
Contigs > 500 bp 112 92
G + C content (%) 72.14 71

N50 150,500 164,678
L50 18 16
CDS 7251 6440

rRNA genes 5,1,2 (5S,16S,23S) 2,1,1 (5S,16S,23S)
tRNA genes 83 99

3.2. Phylogenomic Analysis of Streptomyces Genomes

The whole genome sequences (Table S1) were analyzed using VAMPHyRe software
v.2020 to identify specific genomic fingerprints of Streptomyces species. The phylogenomic
analyses placed strain LM32 within the species S. coelicoflavus, whose genomes were
recovered from soil samples. Similarly, strain LM65 was classified within the species
S. achromogenes subsp. achromogenes (Figure 1), whose genome was also recovered from
a soil sample [40]. It has been demonstrated that analyzing whole genome sequences
instead of MLST/16S rRNA can result in better clustering and taxonomic assignment of
bacterial strains. This is primarily due to the complexity associated with the vast amount
of biological information analyzed with the VGF [29].
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Figure 1. Phylogenomic analyses of 309 Streptomyces strains using whole-genome sequences analyzed
with VAMPhyRE. The genome of the E. coli str. K-12 substr. MG1655 (NC_000913.3) was used to root
the tree. The labels in blue indicate genomes that cluster within the same clade as the Streptomyces
strains from this study. The labels in red identify the genomes of Streptomyces sp. strain LM32 and
Streptomyces sp. strain LM65.

The species identification was reinforced using both phylogenomic analysis and ANI
results (Figure 2). Streptomyces sp. strain LM32 exhibited a FastANI value of 95.61%, an
ANIm value of 95.62%, and a Tetra correlation of 0.99966 with S. coelicoflavus strain DBR11,
which was isolated from soil samples in Assam, India. Based on the cutoff threshold of
>95%, the ANI values and phylogenomic analysis indicated a close relationship between
strain LM32 and the species S. coelicoflavus. Similarly, Streptomyces sp. strain LM65 strain
showed cutoff values >95% with FastANI (98.87%), ANIm (98.93%), and Tetra correlation
(0.99983) with S. achromogenes subsp. achromogenes strain NRRL B-2120, which was isolated
from soil samples in Tokyo, Japan [40]. This result suggests a close relationship between
strain LM65 and the compared species [33,34]. It is noteworthy that in the case of S. achro-
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mogenes, within the results of the phylogenomic analysis, two of the deposited genomes
(strains B2I10 and W4I19-2) clustered into a distinct clade from that of S. achromogenes
subsp. achromogenes and Streptomyces sp. strain LM65. Upon proceeding with the ANI
analyses, the results for these two strains exhibited ANI values significantly lower than
95% (Table S2). Upon further investigation into these two strains, their taxonomy check
status on the NCBI page appears inconclusive, indicating a potential misassignment.
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3.3. Pan- and Core-Genome

The pan- and core-genome analysis presented in the Venn diagram (Figure 3) reveals
patterns of conservation and genetic diversity within the examined Streptomyces species.
The core-genome, represented by the central intersections of the diagram, underscores
a set of essential genes shared among the strains, reflecting their evolutionary heritage
and fundamental biological functions, and the pan-genome is the set of all genes that are
present in the analyzed dataset [41]. Instead, the strain-specific genes, located on the outer
portions of the diagram, suggest genomic adaptability possibly linked to survival and
specialization in various ecological niches [42]. Notably, the genome of Streptomyces sp.
strain LM32 shares most of its genes with the other included genomes, exhibiting a core-
genome of 53% (5,308 genes), which implies that Streptomyces sp. strain LM32 maintains a
close evolutionary connection with its congeners.

On the other hand, the genome of Streptomyces sp. strain LM65 shares 25% of its
genetic content with S. achromogenes subsp. achromogenes NRRL B-2120, indicative of a
potential closer phylogenetic relationship. Conversely, the comparison of Streptomyces
sp. strain LM65 with S. achromogenes W4I19-2 and S. achromogenes B2I10 shows less than
1% genetic overlap with each, suggesting a significant genetic divergence. Moreover, the
comparison between S. achromogenes W4I19-2 and S. achromogenes B2I10 demonstrates a 36%
shared genetic content, denoting a close relationship as corroborated by the phylogenetic
tree (Figure 1), distinctly separate from the clade comprising Streptomyces sp. strain LM65
and S. achromogenes subsp. achromogenes NRRL B-2120. In addition, the pan and core
genome analysis enabled the identification of genes detected as unique to the strains in this
study, with some implicated in the metabolism of nitrogen. In the case of Streptomyces sp.
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strain LM32, a nitrite reductase [NAD(P)H] was detected as unique, while in Streptomyces
sp. strain LM65, genes encoding the respiratory nitrate reductase alpha, beta, and delta
chains were identified. These genes and their products are of significance in addressing
extreme nutrient and energy limitations through the efficient utilization of nitrate as an
energy source. This unique genetic advantage provides them with a competitive edge,
particularly in environments rich in nitrate, maintaining their metabolic activity as a key
survival strategy [43].
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In general, there are no studies describing the involvement of S. coelicoflavus and
S. achromogenes in nitrogen and phosphorus metabolism. Existing studies have instead
focused on investigating their microbial capabilities in biocontrol through the production
of secondary metabolites. For example, S. coelicoflavus has been utilized as a biological
control agent [44], demonstrating its ability to inhibit quorum sensing [45] and produce
extracellular enzymes such as peroxidase, laccase [46], and cellulases [47]. On the other
hand, biosynthetic genes have been identified in the genome of S. achromogenes [48], some
of which have been reported as potential sources of bioactive metabolites with antioxidant
and anticancer activities [49]. Additionally, S. achromogenes has been shown to exhibit
antifungal action against pathogens like Alternaria alternata, Mucor fragilis, and Fusarium
brachygibbosum. Furthermore, it has been highlighted for its growth-stimulating activities
when interacting with tomato plants [50].

3.4. Gene Functional Annotation

The functional categories of genes encoded in both Streptomyces strains LM32 and
LM65 were annotated using the RAST server (Figure 4). This server predicted functional
subsystems that included genes involved in various cellular activities, such as nitrogen
and phosphorus metabolism. The nitrogen and phosphorus metabolism subsystem encom-
passes a range of biochemical pathways and enzymes that are responsible for the uptake,
assimilation, and utilization of nitrogen and phosphorus compounds by microorganisms.
Some of these pathways are involved in processes like nitrate and nitrite ammonification,
nitrosative stress, allantoin utilization, ammonia assimilation, denitrifying reductase gene
clusters, high-affinity phosphate transporter, and control of PHO regulon, polyphosphate,
and phosphate metabolism. Among the Streptomyces genomes reported in the GenBank, the
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majority have been isolated from terrestrial environments, such as soil and land plants [39].
This preference for inhabiting terrestrial settings is due to Streptomyces’ significant role
in nitrogen and phosphorus metabolism, which is facilitated by the metabolic pathways
described above [51,52].
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In order to identify the genes responsible for nitrogen and phosphorus metabolism,
we conducted analyses using RAST software (Figure 5 and Table 2). The results showed
that Streptomyces sp. strain LM32 and Streptomyces sp. strain LM65 encode gene clusters
involved in denitrification. These gene clusters include the nitrate reductase complex,
which consists of narG, narI, narX, and narH. In S. coelicolor, it has been demonstrated
that this complex catalyzes the reduction of nitrate to nitrite, coupling this process to
energy conservation under anoxic conditions, allowing the bacteria to survive and remain
metabolically active [43,53]. Additionally, the activation of genes associated with pathways
related to nitrate reduction has been observed in various bacterial groups. Among these
genes, narH encodes a peptide with multiple sites for the binding of cofactors, narG is
involved in the reduction in dinitrogen and ammonia, and nasD is involved in the reduction
in nitrate in the cytoplasm [54].
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Table 2. Predicted genes related to nitrogen and phosphorus metabolism activities in Streptomyces spp.

Nitrogen Metabolism Gene Name Gene Annotation Reference

Denitrifying reductase gene clusters

narG Respiratory nitrate reductase alpha chain

[55]
narI Respiratory nitrate reductase gamma chain
narX Respiratory nitrate reductase delta chain
narH Respiratory nitrate reductase beta chain

Nitrosative stress NsrR Nitrite-sensitive transcriptional repressor [56]

Ammonia assimilation

gln-1 Glutamine synthetase type II

[55,57,58]

gltD Glutamate synthase [NADPH] small chain
glnB Nitrogen regulatory protein P-II
gltB Glutamate synthase [NADPH] large chain
glnD [Protein-PII] uridylyltransferase
amtB Ammonium transporter
glnE Glutamate-ammonia-ligase adenylyltransferase
glnA Glutamine synthetase type I

Nitrate and nitrite ammonification

narG Respiratory nitrate reductase alpha chain

[43,54]

narX Respiratory nitrate reductase delta chain
narH Respiratory nitrate reductase beta chain
nasD Nitrite reductase [NAD(P)H] large subunit
nasE Nitrite reductase [NAD(P)H] small subunit
narI Respiratory nitrate reductase gamma chain

alc Allantoicase

[59]
gcl Glyoxylate carboligase

Allantoin utilization glxK Glycerate kinase
allB Allantoinase
garR 2-hydroxy-3-oxopropionate reductase

Phosphorus metabolism Gene name Gene annotation

High-affinity phosphate transporter
and control of PHO regulon

phoU Phosphate transport system regulatory protein

[60]
phoR Phosphate regulon sensor protein

phoB Phosphate regulon transcriptional
regulatory protein

ppk1 Polyphosphate kinase

Polyphosphate
ppgk Polyphosphate glucokinase

[61]ppx Exopolyphosphatase
ppk1 Polyphosphate kinase

Phosphate metabolism

phoH Phosphate starvation-inducible protein PhoH,
predicted ATPase

[61–63]

pitB Probable low-affinity inorganic
phosphate transporter

PhoU Phosphate transport system regulatory protein

HWU94 Phosphate transport regulator (distant homolog
of PhoU)

phoL Predicted ATPase related to phosphate
starvation-inducible protein

ppx Exopolyphosphatase
ppk1 Polyphosphate kinase
hppA Pyrophosphate-energized proton pump

phoB Phosphate regulon transcriptional
regulatory protein

pntB NAD(P) transhydrogenase subunit beta
PhoR Phosphate regulon sensor protein
ppa Inorganic pyrophosphatase
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Regarding the assimilation of ammonia, it plays a crucial role in the overall nitrogen
metabolism of organisms. The process is regulated by the glutamine synthetase complex,
specifically through the involvement of glnA and glnD, which control nitrogen metabolism
transcriptionally in response to nitrogen concentration [55,57,58,64]. On the other hand,
the utilization of allantoin is of significant importance in various organisms as it serves as
a nitrogen and carbon source. Allantoin, derived from purine metabolism, is a valuable
nutrient for bacteria like S. coelicolor. In this organism, the assimilation of purines follows
a pathway regulated by genes such as alc and gcl, which are distributed across different
regions. This suggests that both genes are involved in the regulation of purine catabolism
and the production of antibiotics. Furthermore, it is possible that the enzymes generated by
this pathway are also involved in the specific regulation of antioxidants and the disruption
of oxidative homeostasis [59]. Additionally, in response to stress caused by reactive nitrogen
species compounds, NsrR plays a regulatory role in reducing the concentration of nitric oxide.
This mechanism is attributed to the loss of an iron–sulfur center in the structure [56,65].

In relation to phosphorus metabolism, genes that are known to have crucial roles in the
uptake, regulation, and efficient utilization of phosphate through its metabolism have been
identified. These genes include coding genes for both high- and low-affinity phosphate
transporters, transcriptional regulators of the PHO regulon, enzymes involved in polyphos-
phate synthesis and degradation, as well as proteins involved in energy generation from
inorganic pyrophosphate. Specifically, genes such as PhoR and PhoB in S. coelicolor have
been found to be necessary for the full induction of the pho regulon, which is important
for phosphate regulation. Additionally, these genes indirectly participate in nitrogen and
carbon metabolism through interactions with their main regulators [61]. Other impor-
tant genes that have been identified include those that encode for polyphosphate kinase,
exopolyphosphatase, and inorganic pyrophosphatase. These genes have been reported
in genera of the Actinomycetota phylum, such as S. albulus [62], Corynebacterium glutam-
icum [63], and Streptomyces alfalfae [66]. These genes are involved in assembly processes by
catalyzing the synthesis of polyphosphate from inorganic phosphate or the reverse process,
and they also play a role in recycling processes through the hydrolysis of polyphosphates
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and inorganic pyrophosphate. This leads to the release of inorganic phosphate, contributing
to the overall functioning of phosphate cycling and nutrient dynamics in the soil.

4. Conclusions

In summary, this study has developed de novo complete genome assemblies for two
strains of Streptomyces. This has allowed for a deeper understanding of the genomic com-
position, genetic similarity, and the genes related to nitrogen and phosphorus metabolism.
Through phylogenomic analysis, ANI results, as well as pan- and core-genome analysis,
it was determined that the LM32 strain was closely related to the species S. coelicoflavus,
while the LM65 strain was closely related to the species S. achromogenes subsp. achromogenes.
The functional annotation of genes in both strains revealed their involvement in nitrogen
and phosphorus metabolism. Specifically, genes related to nitrate reduction, ammonia
assimilation, and allantoin utilization were identified. Additionally, genes associated with
phosphate metabolism, such as phosphate transporters and enzymes involved in polyphos-
phate synthesis and degradation, were also discovered. These findings are crucial for
understanding the ecological roles of these strains in the rhizospheric soil of Vitis vinifera L.
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