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Abstract: Current understanding of nitrogen (N) mineralization from organic soil inputs considers
three alternative processes: immediate net mineralization of N, net immobilization followed
by net mineralization, or exclusively net immobilization. The three processes are compatible
and linked with the C:N ratio rule. However, research evidence from a number of incubation
studies incorporating processed materials like manures, composts, manure composts, or already
decomposed plant residues suggest the presence of a second N immobilization phase. The
mechanisms and conditions of this process, which is against the prevailing theory of soil N cycling,
have not been ascertained, but they should most likely be attributed to impeded dead microbial
biomass turnover. The transfer of mineral forms of N to the organic N pool may reasonably be
explained by the chemical stabilization of nitrogenous compounds with secondary products of
lignin degradation, which occurs late after incorporation of an organic input in soil. Secondary
immobilization questions the reliability of the C:N ratio and most likely of other quality indices
if proved to be real, even to some extent, while it may also have significant consequences on the
management of soil organic additives applied as fertilizers.

Keywords: net N mineralization; organic additives; gross immobilization; C:N ratio; microbial
biomass turnover

1. Introduction

The description of N dynamics following plant residue, manure, or compost input
in soil has long been a central issue in soil ecology research. A thorough knowledge of
it may allow the prediction of soil mineral N availability, which is an important variable
in ecosystem processes and a key component of soil management in the agricultural
context. The nutrient mineralization rate of soil organic amendments (applied as fertilizer)
constitutes the main parameter controlling nutrient availability for plant uptake and,
therefore, nutrient use efficiency as well as losses to water bodies.

The amount of mineral N accumulated over aerobic soil incubations represents net
N mineralization and can be defined as the balance of gross N mineralization (or gross
ammonification), and microbial N fixation (or immobilization). It is also well shown that
net N mineralization dynamics in control soils lacking any amendments are very often
described by first order kinetics [1,2], whereas these processes become more complex
when soil is mixed with organic additives. The ultimate N release to the soil is directly
determined by the decomposability of the organic substances added and the availability of
N for microbial growth.

The theoretical kinetic models in Figure 1 (modified from [3]) show the three alternative
dynamic processes of mineral N concentration in soil following the addition of organic
inputs, given that there is no interference of root uptake, leaching, or aerial losses. To
this effect, research data that fit well to these kinetic models are typically obtained by soil
incubation trials without plants. Kinetic curves in Figure 1 were extended (dashed lines)
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to show that all three processes would end up in net mineralization which would plateau
at a certain level if the experiments or simulation exercises were prolonged in time [4–6].
However, long-term incubations are rare as relevant experiments typically intend to give
insights on N dynamics for the first growing season after application. Therefore, plateaus
are provided from the estimated asymptote of kinetic curves fitting on data. The value of
the asymptote represents the theoretical maximum amount of N or the percentage of initial
organic N that could be mineralized.
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Figure 1. Alternative dynamics of soil inorganic N after the addition of organic residues (modified
from [3]).

The three alternative N release trajectories of Figure 1 do not predict for secondary
decreases in mineral N; therefore, no explanatory support has been given until now for
such a decrease.

The theoretical considerations behind the three alternative processes of immobilization–
mineralization (Figure 1) are compatible and closely linked with the C:N ratio concept.
Organic C concentration in soil drops during the immobilization phase as CO2 is released
into the atmosphere. On the other hand, organic N concentration increases as ammonium
and nitrates are taken up by microorganisms and transferred to the live and dead microbial
biomass, which are thereafter considered as parts of the organic N pool of the input.
Therefore, the C:N ratio of the sum of the original and derived organic forms of N decreases
(e.g., results on litter decay by [7]) and net mineralization occurs when this ratio decreases
below a certain value. From then onwards, organic N concentration becomes lower (though
to a smaller rate compared with that of C), resulting in the steady decrease in the C:N ratio
until the point where it becomes almost equal to that of the microbial biomass (Figure 2).
The % of initial organic N that is mineralized is typically smaller than the % of initial C that
is mineralized [8,9] indirectly indicating that the C:N ratio of a material decreases during
decomposition in soil. Hence, when nitrogen mineralization kinetic data are fitted well by
any of the curves of Figure 1, the validity of the C:N rule is not contradicted.
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A secondary decrease in mineral N concentration would undermine the relationship
between the C:N ratio and N dynamics. Such a decrease infers that although the C:N
ratio narrows, N is immobilized. Hence, apart from scrutinizing published information
on the long-term N mineralization dynamics of organic inputs in order to reveal whether
secondary immobilization actually occurs in incubation studies, the literature data citing a
direct comparison between mineral N release and the C:N ratio were also reviewed.

2. The Relationship between N mineralization and C:N Ratio for Processed Materials

Research results concerning the N mineralization of processed materials (i.e., litter
at advanced stages of decomposition, compost, manure, and manure compost) very
often show a lack of correlation with the C:N ratio. Four distinct manures incubated
in a microcosm study by [10] of immobilized N from soil and the N dynamics lacked
any relation with the initial C:N ratio of used manures. Similarly, the C:N ratio was not
a good predictor of the extractable inorganic N concentrations in soil amended with
fresh and composted cattle manures [11]. Maturity parameters of composts including
the C:N ratio were poorly correlated with the rate and extent of mineralization [12,13].
It is also underlined that manures and composts typically have C:N ratios below 25
and, although they are expected to result in net mineralization in this range, they often
provoke net N immobilization [6].

3. Secondary Immobilization

Secondary N immobilization or N re-immobilization phases are illustrated in min-
eralization dynamics graphs by a drop of mineral N (NH4

+–N + NO3
−–N) at the late

stages of organic material decomposition in soil, regardless of whether or not an initial
immobilization phase occurred (Figure 3).
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Interestingly, scientific data concerning secondary immobilization processes are not
uncommon. Such data refer to the decomposition of tree leaf litter of either legume
or non-legume species [14–18], above-ground biomass of crop residues and tree weed
species [19], and especially different types of manure [20–27] and composts [13]. Some of
these studies showed that the re-immobilization phase was followed by re-mineralization,
thus suggesting a wave-like pattern of N release dynamics [16,21,25].

4. Potential Interpretations

Decreases in cumulative net N release are not discussed in some research articles either
because they were considered as not important or as measurement inaccuracies. Before
attempting to provide some plausible explanations, a brief discussion is given indicating
the reasons why secondary immobilization cannot be due to volatilization or denitrification.

Ammonia volatilization in some cases represents an important loss of N from the soil,
especially in alkaline conditions. For example, the equilibrium between ammonium and
ammonia shifts towards ammonia and significant gaseous losses of N may occur after manure
incorporation in an arable alkaline soil [28]. However, the secondary decrease in mineral N
in the above-cited studies could hardly be attributed to volatilization because it concerns a
process typically appearing after many weeks of incubation. It also appears even when the
principal form of mineral N in soil is the nitrate form, which leads to soil acidification.

Denitrification might also be seen as the reason for N losses. It particularly occurs
when soil is at or near water saturation leading to limited O2 diffusion, and when a recent
addition of available carbon to the soil has stimulated heterotrophic microbial activity. The
process may certainly be taking place inside anaerobic microsites even in the otherwise
aerobic conditions of incubations. To this effect, the rates of mineral N accumulation in
soil would decrease and maximum N release would be pushed down, as expressed by the
curve asymptote. This would be an unlikely reason though for the abrupt drop in measured
mineral N. Such decreases are typically observed in closed systems, where O2 is depleted
at a certain point, rather than in aerobic incubations where an equilibrium between O2
diffusion and microbial consumption is achieved. Moreover, at late decomposition stages
when the rate of microbial respiration significantly decreases, O2 consumption reaches
its lowest level. Additionally, by studying the effects of nitrate (NO3

−) concentration
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on emissions of denitrification gases, Wang et al. [29] showed that N aerial losses are
proportional to nitrate availability. These results can justify a decreased rate of nitrate
accumulation in soil, but not a sudden drop in mineral N.

Robust explanations for the secondary decrease in mineralized N can be provided by
processes appearing or becoming more effective at the late stages of decomposition.

Three potential interpretations of the reported late decreases in extracted mineral N
during incubations are suggested:

1. Secondary immobilization could be the outcome of a replacement of the initial
microbial community by a microbial biomass having a significantly lower C:N ratio.
Such a replacement could justify the increased microbial N uptake rates as a result
of elevated needs for this element for protein formation. However, suggestions of a
stoichiometric alteration of communities during microbial succession or a shift to more
bacteria-dominated communities, which are known to have lower C:N ratios than fungi,
are not empirically supported.

2. Late decreases of mineral N could be obtained during the decomposition of residue
mixtures or of a material composed of two chemical fractions which are characterized
by contrasting N dynamics, i.e. one promoting net N mineralization and the other net
N immobilization. Figure 4 is a graphic demonstration of secondary N immobilization
appearing in such mixtures as the cumulative result of their component decomposition
with no interaction. Composts and manures mixed with bedding material often contain
substances of contrasting lability.

Nitrogen 2022, 3, FOR PEER REVIEW 5 
 

 

consumption reaches its lowest level. Additionally, by studying the effects of nitrate 
(NO3−) concentration on emissions of denitrification gases, Wang et al. [29] showed that N 
aerial losses are proportional to nitrate availability. These results can justify a decreased 
rate of nitrate accumulation in soil, but not a sudden drop in mineral N.  

Robust explanations for the secondary decrease in mineralized N can be provided by 
processes appearing or becoming more effective at the late stages of decomposition. 

Three potential interpretations of the reported late decreases in extracted mineral N 
during incubations are suggested: 

1. Secondary immobilization could be the outcome of a replacement of the initial mi-
crobial community by a microbial biomass having a significantly lower C:N ratio. Such a 
replacement could justify the increased microbial N uptake rates as a result of elevated 
needs for this element for protein formation. However, suggestions of a stoichiometric 
alteration of communities during microbial succession or a shift to more bacteria-domi-
nated communities, which are known to have lower C:N ratios than fungi, are not empir-
ically supported. 

2. Late decreases of mineral N could be obtained during the decomposition of residue 
mixtures or of a material composed of two chemical fractions which are characterized by 
contrasting N dynamics, i.e. one promoting net N mineralization and the other net N im-
mobilization. Figure 4 is a graphic demonstration of secondary N immobilization appear-
ing in such mixtures as the cumulative result of their component decomposition with no 
interaction. Composts and manures mixed with bedding material often contain sub-
stances of contrasting lability.  

 
Figure 4. Illustration of late mineral N decrease obtained during the decomposition of a mixture 
(middle line) composed of two residues with very different N dynamics and no interaction: residue 
A would show net mineralization if decomposed separately and, residue B would show net immo-
bilization. 

3. All mechanistic explanations of immobilization–mineralization processes require 
the acceptance of turnover of dead microbial biomass and derived materials. Nitrogen in 
organic input is introduced into the N of soil organic matter, which is mineralized and 
assimilated again by the microbial biomass; however, turnover is stalled by stabilization 
processes, either chemical or physical. Organo–mineral associations are very important 
for stabilizing the microbial necromass in soil. Restricted accessibility of enzymes to bio-
molecules or the reduced activity of enzymes due to the conformational changes of 

Figure 4. Illustration of late mineral N decrease obtained during the decomposition of a mixture (middle
line) composed of two residues with very different N dynamics and no interaction: residue A would
show net mineralization if decomposed separately and, residue B would show net immobilization.

3. All mechanistic explanations of immobilization–mineralization processes require
the acceptance of turnover of dead microbial biomass and derived materials. Nitrogen
in organic input is introduced into the N of soil organic matter, which is mineralized and
assimilated again by the microbial biomass; however, turnover is stalled by stabilization
processes, either chemical or physical. Organo–mineral associations are very important
for stabilizing the microbial necromass in soil. Restricted accessibility of enzymes to
biomolecules or the reduced activity of enzymes due to the conformational changes
of molecules when they are attached to particle surfaces may be components of these
processes [30]. It has been found that N-rich microbial metabolites can attach directly to
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mineral particle surfaces or form associations with the existing mineral-bound organic
matter, thus increasing their stabilization [31]. Humification processes during the de-
composition in soil may also lead to the chemical condensation of organic forms of N
and the production of complex assemblages (heteropolycondensation) which are highly
resistant to further degradation [32].

The reason for organo–mineral complexes or chemical stabilization processes to
abruptly intensify in the late stages of decomposition remains to be clarified. Either
the contact of secondary metabolites with mineral constituents of the soil become stronger
after a certain degree of biochemical processing or chemical condensation requires the
existence of some particular chemical organic molecules to appear first. For example,
Mellilo et al. [33] suggested that lignin degradation is the essential process provoking late
N immobilization. These authors considered two phases of N immobilization during litter
decay and suggested that lignin-shielded cellulose was the dominant carbon source for the
microbes during the second period. Phenolics, which are the products of lignin degradation,
recondense with nitrogenous compounds thus leading to elevated N-pool concentration.
Starting from the well-supported observation that the limit value of total litter mass loss
was negatively correlated with the N concentration of litter, Berg [34] also suggested that
low-molecular N reacts with lignin remains forming recalcitrant aromatic compounds. The
retardation of litter decomposition and the stabilization of N in these aromatic compounds
starts when celluloses have almost disappeared and lignin degradation has become the
dominant process.

Chemical condensation of nitrogenous compounds likely represents the most plausible
explanation of secondary immobilization transforming the turnover of dead microbial
biomass and derived materials from a process of N release to a process channeling mineral
N to the organic N pools.

The invoked transformation of mineral N to organic N is a natural soil humification
process contributing to gross N immobilization. This process becomes stronger in the late
stages of decomposition, especially of processed materials, when gross immobilization
frequently surpasses gross mineralization. Hence, long-term incubations simply allowed
this process to be revealed in graphical plots of mineral N evolution as a distinct phase. In
field conditions, where plants continuously remove N from the soil solution and, therefore,
mineral forms of N do not accumulate as in incubation samples, the suggested process can
be regarded as a microbially-mediated one that is antagonistic to plant uptake.

5. Concluding Remarks

Re-immobilization seems to be a relatively common and underestimated process in
N dynamics, the exact mechanism of which remains unclear. It affects the general view
that, even if there is an initial stage of immobilization, N will ultimately be released in soil.
There are still many research gaps, including the timing and conditions under which N is
re-immobilized and the requirements for it to become available again to plants. However,
it certainly undermines the relationship between the C:N ratio of an organic input in soil
and its N mineralization and makes the establishment of any quality index more difficult.
Moreover, if secondary immobilization phases are actual components of N dynamics, the
management of organic application in soil becomes much more complex, and synchrony
much more difficult to achieve.

The great heterogeneity and individuality of organic inputs combined with a reduced
reliability of quality indices as predictors of N mineralization renders the incubation of a
soil + input mixture as a realistic approach to estimate mineralization potential. Although
a time-consuming method, soil + input mixture incubation under controlled conditions
that extends for a period of time equivalent to the first growing season after application,
remains a valuable approach.
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