
����������
�������

Citation: Yu, J.; Wang, J.; Leblon, B.;

Song, Y. Nitrogen Estimation for

Wheat Using UAV-Based and

Satellite Multispectral Imagery,

Topographic Metrics, Leaf Area

Index, Plant Height, Soil Moisture,

and Machine Learning Methods.

Nitrogen 2022, 3, 1–25. https://

doi.org/10.3390/nitrogen3010001

Academic Editor: Stephen Macko

Received: 31 October 2021

Accepted: 20 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Nitrogen

Article

Nitrogen Estimation for Wheat Using UAV-Based and Satellite
Multispectral Imagery, Topographic Metrics, Leaf Area Index,
Plant Height, Soil Moisture, and Machine Learning Methods

Jody Yu 1,* , Jinfei Wang 1,2 , Brigitte Leblon 3 and Yang Song 1

1 Department of Geography and Environment, The University of Western Ontario,
London, ON N6G 3K7, Canada; jfwang@uwo.ca (J.W.); ysong24@uwo.ca (Y.S.)

2 The Institute for Earth and Space Exploration, The University of Western Ontario,
London, ON N6A 3K7, Canada

3 Faculty of Forestry and Environmental Management, University of New Brunswick,
Fredericton, NB E3B 5A3, Canada; bleblon@unb.ca

* Correspondence: jyu466@uwo.ca

Abstract: To improve productivity, reduce production costs, and minimize the environmental impacts
of agriculture, the advancement of nitrogen (N) fertilizer management methods is needed. The
objective of this study is to compare the use of Unmanned Aerial Vehicle (UAV) multispectral
imagery and PlanetScope satellite imagery, together with plant height, leaf area index (LAI), soil
moisture, and field topographic metrics to predict the canopy nitrogen weight (g/m2) of wheat
fields in southwestern Ontario, Canada. Random Forests (RF) and support vector regression (SVR)
models, applied to either UAV imagery or satellite imagery, were evaluated for canopy nitrogen
weight prediction. The top-performing UAV imagery-based validation model used SVR with seven
selected variables (plant height, LAI, four VIs, and the NIR band) with an R2 of 0.80 and an RMSE
of 2.62 g/m2. The best satellite imagery-based validation model was RF, which used 17 variables
including plant height, LAI, the four PlanetScope bands, and 11 VIs, resulting in an R2 of 0.92 and an
RMSE of 1.75 g/m2. The model information can be used to improve field nitrogen predictions for the
effective management of N fertilizer.

Keywords: Unmanned Aerial Vehicle (UAV); PlanetScope imagery; precision agriculture; nitrogen
management; machine learning; Random Forests; Support Vector Regression (SVR); wheat

1. Introduction

Precision agriculture (PA) is a management technique that selectively applies crop
farming resources such as fertilizer, water, pesticides, and herbicides based on the plant
needs within a field [1–3]. Nitrogen is an essential macronutrient to plants as a major
constituent of organic material including enzymic processes, chlorophyll, and oxidation-
reduction reactions; levels of nitrogen in plant tissue can indicate yield potential and
crop health [4]. However, nitrogen is one of the most expensive nutrients to supply, and
studies found that nitrogen recovery efficiency by annual crops was, on average, less
than 50% of the amount of fertilizer applied [5,6]. Excessive fertilizer can leach from the
soil and contaminate waterways, disrupting local ecosystems and causing denitrification
that results in greenhouse gas emissions [7]. Nutrients that have been added beyond
the critical level of maximum growth can continue to accumulate in the plant tissue
without any further yield increase [4]. Commonly in grain crops such as wheat, excessive
nitrogen can cause plant stems to grow tall to the point of lodging—the stems bend
over, making it difficult to harvest and increasing the chances of grain moisture and
disease, and often reducing yield significantly [8]. Usually, nitrogen deficiency can be noted
from chlorosis, the condition in which leaves yellow as the plant’s chlorophyll content
drops [9]. With reduced photosynthetic activity, the plant will not reach peak health and
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yield will be low. Water is also key to the transportation of nutrients from the soil to a
plant. The availability of water to a plant depends on the weather conditions during the
growing season, the soil moisture, and the field micro-topography affecting water flow and
accumulation [10,11]. Understanding a field’s characteristics as well as monitoring plant
biophysical characteristics including height, leaf area, and leaf colour can provide useful
information in nitrogen fertilizer applications.

In PA, remote sensing imagery is useful because it does not require physical or destruc-
tive contact with plants to gather valuable crop information [12]. Vegetation indices (VIs)
can be derived from the spectral information provided by the imager; VIs are mathematical
combinations or transformations of spectral bands that have been widely used in agricul-
tural research. VIs allow for the deriving of specific plant properties such as chlorophyll or
nutrient content by taking advantage of the differential spectral properties of plants in the
visible and near-infrared (NIR) wavelengths [13–15]. The VI information can then provide
timely knowledge of crop conditions, allowing for a suitable rate of application at the right
time and location depending on the variations within a field.

Optical satellite imagery for crop monitoring has had several decades of research
and application [16]. Examples of recently launched optical satellites in operation include
RapidEye since 2008, Landsat 8 since 2013, and Sentinel-2 since 2015, all frequently used in
studies on crop nutrient, yield, and growth management [3]. RapidEye has five spectral
bands with 6.5 m resolution. Depending on the location, the five-satellite constellation re-
visit time is between one to five days. Landsat 8 Operational Land Imager has nine spectral
bands with varying spatial resolutions of 15 to 30 m. It has a 16-day revisit time to the same
area and takes over 700 scenes a day. Sentinel-2 has 13 spectral bands with 10 m, 20 m, and
60 m spatial resolutions depending on the band. Sentinel-2 constellation is composed of
two satellites allowing for a five-day revisit time over the same area. Limitations in optical
satellite imagery include low spatial sensitivity as the spatial resolution may be too coarse
for small-scale crop fields [12]. The temporal sensitivity can be rather low, such as that of
Landsat 8 with a 16-day revisit time, during which crops would have changed significantly,
and thus, valuable information on the different stages of growth would not be obtained.
Sentinel-2 and RapidEye have higher temporal resolutions of one to five days, but it can
vary by location and not all images may be useful due to cloud cover obscuring land.
Additionally, factors such as cloud cover, geometric distortion, and atmospheric distortion
may require advanced processing expertise to ensure sufficient image quality [17].

New satellite systems are improving in spatial and temporal sensitivity, such as the
PlanetScope satellite constellation [18]. Designed for collecting information for use in
land-change detection, crop monitoring, climate monitoring, and more, the PlanetScope
satellite constellation is composed of over 130 satellites called Doves allowing for spatial
resolutions of 3 to 5 m and daily revisit. Beginning with the first launch of a group of
Doves in March 2016, over 10 more groups have launched since to improve revisit time, as
well as spatial and spectral resolutions. PlanetScope imagery products are also available
in multiple asset forms with different radiometric processing and rectification, such as
the “surface reflectance” product imagery downloaded for this study. Currently, a select
portion of Planet data is available for free download under an open data access policy.
PlanetScope imagery has been used in studies of wheat yield, biomass, and LAI monitoring
and modelling with promising results [19–21]. However, there are few studies focused
specifically on nitrogen management using PlanetScope data, a gap that this study aims
to fill.

With the rapid advancement in UAV technology in recent years, there is much research
interest in UAV-based crop canopy nitrogen retrieval [3]. UAV-based remote sensing can
provide low cost and higher spatial and temporal resolution data for crop management.
Individuals with basic training can operate a UAV using programmed routes and collect
images with <10 cm resolutions [22]. They can be flown to capture more frequent image data
and offer flexibility in operation for times when weather is most suitable [23]. Compared
to satellites, overall, UAV-based systems are often lower in cost for data collection and
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processing. Studies have shown significant correlations between crop spectral variables
derived from UAV imagery and crop nitrogen content [24–26]. Many studies are based
on single or combinations of different spectral indices’ relationships with crop nitrogen
content, noting variation in the relationships at different stages of crop growth [24,27,28].
The spectral indices with the strongest relationship to crop nitrogen were noted to occur
during early wheat growth stages before and up to flowering. Often, studies involving the
estimation of nitrogen were conducted in controlled experimental conditions, and more
studies are needed on real field conditions.

Wheat was selected for this study because it is among the most grown crops in
Ontario [16]. With the development of new remote sensing technologies, processing
methods, and computing capabilities, estimation models for crop nitrogen can be improved.
Machine learning is an area of research interest as it can be used to develop accurate crop
monitoring models for large, nonparametric, nonlinear datasets [29]. Recent studies have
tested the use of linear regression, Random Forest (RF), and Support Vector Regression
(SVR) models in UAV-based canopy nitrogen weight (CNW) prediction models [25–27,29].
Although linear regression is a commonly used method to predict nitrogen, some VIs
(e.g., NDVI) may saturate beyond the early growth crop stages and some models may
have reduced accuracy due to multicollinearity [26,30]. By contrast, machine learning-
based regression methods such as RF and SVR were found to produce more accurate
models compared to classical linear regression methods, as they are unaffected by the
assumptions of linear regression [30]. However, most current literature on the use of
remote sensing data and machine learning have only considered spectral information for
crop nitrogen modelling [28]. As a crop’s nitrogen status can be affected by many factors
including fertilizer application, soil characteristics, water availability, and field micro-
topography, nitrogen prediction models may be improved if these plant physiological and
environmental variables are considered [31].

With better management of nitrogen fertilizers, not only can costs and negative envi-
ronmental impacts be minimized—yield and quality can also be increased. This study aims
to evaluate machine learning modelling methods with plant spectral, biophysical, and field
environmental variables to predict CNW in wheat crops using UAV and satellite-based
imagery. The objectives of this study include, (i) studying the relationship between the
spatial variation of CNW and factors such as plant height, LAI, soil moisture, and topo-
graphic metrics within wheat fields in Southwestern Ontario using multispectral UAV—or
PlanetScope—imagery; (ii) determining the optimal combination(s) of spectral variable(s),
crop variables, and/or environmental conditions (soil, water, and topographic data) for
wheat canopy nitrogen estimation and prediction; and (iii) evaluating the temporal varia-
tion of nitrogen estimation and prediction during the early growth stages of wheat using
UAV images or PlanetScope images, and related variables.

2. Materials and Methods
2.1. Study Area and Data Collection

The study sites are in Strathroy-Caradoc, Ontario, Canada, nearby the community
of Mount Brydges (Figure 1). Fieldwork was conducted during May–June 2020 with an
average temperature of 22 ◦C and humidity averaging 73%, characteristic of southwestern
Ontario’s humid continental climate zone. The sites are in a predominantly agricultural
area about 25 km west of London, Ontario’s urban center.

In southwestern Ontario, winter wheat is planted in autumn for germination, lying
dormant during winter and resuming growth in spring. This study’s wheat fields’ cultivar
was “Soft Red Winter Wheat”, which was planted in mid-October 2019, began sprouting
mid-April 2020, and was harvested in early August. The three fields labelled W1, W2, and
W3 are sized at 48, 21, and 27 hectares, respectively. Beginning in early May, sampling was
conducted every 7–8 days for a total of five sample dates to capture significant growth
stages of the crop (Table 1). Wheat growth stages were recorded following the Biologische
Bundesanstalt, Bundessortenamt, and CHemische Industrie (BBCH) scale [32]. The data
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acquired for this study encompassed the wheat crop’s growth period from leaf development
up to and including inflorescence emergence (BBCH 10 to 59) for nitrogen estimation. The
early stages of growth before flowering are especially important as fertilizers applied then
have better nitrogen use efficiency and yield response [4,33]. Fertilizer can be applied
during autumn planting, but lower probability of rainfall also decreases the amount of
N from moving into the soil. Fertilizer left above soil during winter will not penetrate
and may move during spring snowmelt. During later growth stages (BBCH 60+) from
fruit development to ripening, root N uptake slows down as the plants translocate N from
vegetation to grains and excess fertilizer can leach from the field [34].
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Figure 1. Location of the three 2020 wheat fields near Mount Brydges in southwestern Ontario,
Canada, over a Google Earth image.

Table 1. Summary of fieldwork data acquisitions.

Fieldwork Date Air Temperature (◦C) BBCH * Growth Stage

5 May 17 22–24
12 May 12 23–26
20 May 14 30–32
27 May 21 39–41
4 June 23 52–58

* Biologische Bundesanstalt, Bundessortenamt, and CHemische Industrie Scale.

Prior to sample point selection, a DJI Phantom 4 Real-Time Kinematics (RTK) UAV
was flown over the bare soil of the fields. The UAV connected to an RTK global navigation
satellite system (GNSS) base station acquired images with positioning metadata at 1.5 cm
vertical and 1 cm horizontal positioning accuracy. These images were mosaicked to create
a digital elevation model (DEM) GeoTiff image. The DEM was imported into Google
Earth and 16 sample points were selected for each field based on the variation of elevation
and coverage of representative areas (Figure 2). Considering the crop rows were planted
northwest–southwest for field W1 and north–south for fields W2 and W3, the sampling
pattern followed the row directions for navigation efficiency. The sample points were
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placed in a four-by-four grid, spaced 60 m from one another. A minimum distance of 50 m
from roads was used to reduce possible effects of transportation pollution. From Google
Earth, the points were exported to a KML file and downloaded onto mobile devices. On
the first fieldwork date, the KML file was used to navigate to the pre-determined sample
points and red flags were placed for accurate positioning in following fieldwork sessions.
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Figure 2. Digital elevation model showing the variation of the wheat field’s topography at each
sample point for (a) W1 field, (b) W2 field, (c) W3 field.

To measure the biomass at each sampling point, a square guide made of plastic tubing
of 50 cm × 50 cm was placed around a patch of wheat. The plants within the guide were
destructively collected by cutting at the stem base above ground, then placed in paper bags.
The average distance between rows was 17 cm, and mostly three rows of wheat would be
collected from the 0.25 m2 biomass block. On the same day following fieldwork collection,
the fresh biomass was weighed in grams then fully dried in an oven at 60 ◦C for 48 h. Dry
biomass was weighed before being sent to A&L Canada Laboratories for plant analysis.
The biomass was ground into a fine powder able to pass through a 1 mm sieve before being
used in the Laboratory Equipment Company (LECO) FP628 nitrogen combustion method
to obtain the leaf N content percentages [35].

Six measurements of plant height in centimeters were taken around each sampling
point within a 1 m2 block on every fieldwork date, and an average height was calculated.
Six measurements of soil moisture were collected within a 1 m2 block around the sampling
point using an ML3 ThetaProbe (Delta-T Devices Ltd., Burwell, Cambridge, UK) and
averaged [36]. Plant phenology was recorded at each sample point using the BBCH scale to
determine growth stage during data collections.

The leaf area index (LAI) was measured non-destructively using a LAI-2200C Plant
Canopy Analyzer (Li-Cor, Inc., Lincoln, NE, USA) [37]. Following manufacturer recommen-
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dations, five measurements were taken along the row at each sample point during clear
skies or uniform overcast conditions. Files from the device were transferred to and pro-
cessed with the Li-Cor software File Viewer FV2200. Processing options include scattering
correction based on the field conditions, and output text files with final LAI measurements.

2.2. UAV Imagery

In this study, the two UAVs used were a Da-Jiang Innovations (DJI) (DJI, Shenzhen,
China) Matrice 100 and a DJI Phantom 4 RTK [38]. The DJI Phantom 4 was flown at 30 m
altitude as per the manufacturer’s recommendations regarding the visual sensor system’s
optimal performance and connection to the RTK GNSS base station. The RGB image
resolution was 0.9 × 0.9 cm and capture was set to 80% side and 80% front image overlap.
A fine resolution, typically < 10 cm, and high image overlap ensure a greater chance of
successful image mosaicking as crop canopies densify during a growing season [27].

The DJI Matrice 100 carried a MicaSense RedEdge (MicaSense Inc., Seattle, WA,
USA) narrowband multispectral camera including the following bands ordered by in-
creasing wavelength: (1) blue, (2) green, (3), red, (4) red-edge, and (5) near-infrared (NIR)
(Table 2) [39]. Image acquisition was conducted on the same dates as ground fieldwork
before biomass collection. For the fieldwork conducted during the week of 27 May, the
weather conditions were characterized by strong winds and sudden rain showers, so the
UAV was flown on different dates between 26 May and 29 May for each field whenever the
weather was suitable.

Table 2. Spectral characteristics of the five MicaSense bands.

Band Name Band Range (nm) Centre Wavelength (nm) Bandwidth (nm)

1 Blue 465–485 475 20
2 Green 550–570 560 20
3 Red 663–673 668 10
4 Red-Edge 712–722 717 10
5 NIR 820–860 840 40

The flight plans for each field were made in the Pix4D software suite “Pix4Dcapture” app
(Pix4D S.A., Prilly, Switzerland) to cover entire fields in a zigzag pattern [40]. Pix4Dcapture
includes the function of adding custom UAV and sensor properties to calculate the flight
plan’s estimated total time, battery usage, and image resolution at the plan’s designated
altitude. The flight altitude for each field’s plan was set at 60 m, as >60 m wind and gust
conditions were usually greater than the UAV manufacturer recommendations. Based on
the MicaSense camera’s specifications, the resulting image resolution was 4 cm × 4 cm
with capture set to 80% side and 80% front overlap. Unfortunately, images for field W3 on
5 May and field W1 on 27 May were corrupted and unusable for further processing.

2.3. UAV Image Processing

UAV image processing followed the flowchart of Figure 3. The DJI Phantom 4 RTK
images taken in April over each field’s bare soil were mosaicked in Pix4Dmapper soft-
ware to generate a DEM GeoTiff. Using the System for Automated Geoscientific Analysis
(SAGA), a free, open-source spatial data analysis software package, topographic metrics
were computed from the DEM [41]. Using the “Terrain Analysis—Morphometry” tool,
the metrics generated include slope, aspect, profile curvature, and plan curvature. Cre-
ating topographic wetness indices (TWI) required several steps. First, using the “Terrain
Analysis—Hydrology” tool, a flow accumulation layer of the field was created. Using the
“Flow Width and Specific Catchment Areas (SCA)” tool, two SCAs were created using dif-
ferent algorithms: Deterministic 8 and Multiple Flow Direction. The “Topographic Wetness
Index (TWI)” tool was then used to create two maps, TWI #1 and TWI #2, based on the
respective algorithm SCAs. The final topographic metrics were exported as GeoTiff files.
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MicaSense camera multispectral images were processed in Pix4Dmapper to create an
orthomosaic image per band with 4 cm × 4 cm resolution. An important step in producing
a high-quality final image is radiometric calibration considering the sensor influence and
scene illumination of the UAV flight. Prior to each flight over a field, the MicaSense camera
was positioned above a MicaSense Calibrated Reflectance Panel to take a minimum of
five white reference images for each band. From the Exchangeable Image File Format
(EXIF) metadata of the images, Pix4Dmapper can read the sensor settings, properties, and
geolocation at the time the images were taken. Before starting the mosaic processing, setting
options include inputting the white reference images and manufacturer-provided panel
reflectance values to calibrate and correct image reflectance for each of the bands. Then,
Pix4Dmapper uses the Structure from Motion (SfM) algorithm to correct image perspectives
and recognize where to stitch images together [22]. The high image overlap parameters set
in the flight plan enable the software to recognize greater, similar areas of each image for a
higher chance of mosaic success. Pix4Dmapper processing options include georeferencing
with ground control points (GCP) to improve the absolute location accuracy. Following
Pix4D’s recommended number of five GCPs, black and white checkered boards were
placed around the wheat fields and their coordinates recorded using a Global Positioning
System (GPS) connected to the RTK. The output orthomosaic images are GeoTiff files with
reflectance values for each MicaSense band.

2.4. Satellite Imagery

In this study, PlanetScope satellite imagery was acquired from Planet Labs Inc. through
submission and acceptance of the project proposal. Revisit times are almost daily world-
wide with resampled spatial resolution of 3 m × 3 m. The image products available for
this study were from the third-generation sensors, Dove-R, with four bands ordered by
increasing wavelength: (1) blue, (2) green, (3) red, (4) NIR (Table 3). The product scenes
were approximately 25 km × 23 km, and in the case of the three study fields, all were in
one image. Five satellite images were downloaded, matching the capture dates with the
ground data collection dates to maintain consistency with the plant physiology and field
conditions. The images were available for download as GeoTiff surface reflectance assets,
orthorectified and radiometrically corrected based on the atmospheric conditions of the
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specific ground locations. In ArcGIS, the large scenes were cropped to smaller images of
each study field for subsequent processing.

Table 3. Spectral characteristics of the PlanetScope Dove-R sensors.

Band Name Band Range (nm) Centre Wavelength (nm) Bandwidth (nm)

1 Blue 464–517 491 53
2 Green 547–585 566 38
3 Red 650–682 667 32
4 NIR 846–888 867 42

2.5. Vegetation Indices

MicaSense and PlanetScope reflectance images of each of their respective bands were
exported into ArcGIS to extract crop canopy reflectance values at the sample points. With
the “Raster Calculator” tool in PCI Geomatica Banff, the images were used to compute the
VIs listed in Table 4 and exported as GeoTiff files. Using ArcGIS, the VI layer values were
extracted at each sample point. As MicaSense has a red-edge band, the following three
indices were included specifically for the UAV-data modelling: the chlorophyll index red-
edge (CI_RE), the normalized difference vegetation index (NDRE), and the ratio vegetation
index #2 (RVI2). VIs have been extensively studied for the purpose of crop monitoring and
biophysical estimation, such as the normalized difference vegetation index (NDVI) [12,42].
VIs developed for chlorophyll estimation have been found to be related to plant nitrogen
content as the photosynthetic enzyme, rubisco, encompasses the largest proportion of
nitrogen in leaves [4]. Chlorophyll reflects green and NIR radiation and absorbs more than
70% of blue and red radiation [43].

Table 4. Vegetation indices used in the study.

Index 1 Formula 2 Authors

BNDVI (NIR − BLUE)/(NIR + BLUE) Wang et al. [44]
CI_RE (NIR/REDEDGE) − 1 Gitelson et al. [45]

ISR RED/NIR Fernandes et al. [46]
MSR (NIR/RED)−1√

NIR
RED +1

Chen [47]

MTVI2 1.8(NIR−GREEN)−3.75(RED−GREEN)√
(2NIR+1)2−6(NIR−5

√
RED)−0.5

Bagheri et al. [48]

NDRE (NIR − REDEDGE)/(NIR + REDEDGE) Gitelson and Merzyak [49]
NDVI (NIR − RED)/(NIR + RED) Rouse et al. [50]
OSAVI 1.6[(NIR − RED)/(NIR + RED + 0.16)] Rondeaux, Steven, and Baret [51]
RDVI NIR−RED√

NIR+RED
Roujean and Breon [52]

RGBVI
(

GREEN2 − BLUE ∗ RED
)

/
(

GREEN2 + BLUE ∗ RED
)

Bendig et al. [53]

RVI NIR/RED Jordan [54]
RVI2 NIR/REDEDGE Kanke et al. [55]

WDRVI (0 .2 ∗NIR− RED)/(0 .2 ∗NIR + RED) Gitelson [56]
VDVI (2 ∗ GREEN−RED−BLUE)

(2 ∗ GREEN+RED+BLUE)
Fuentes et al. [57]

1 Vegetation index abbreviations: BNDVI = blue normalized difference vegetation index; CI_RE = chlorophyll
index red edge; ISR = infrared simple ratio; MSR = modified simple ratio; MTVI2 = modified triangular vegetation
index; NDRE = normalized difference vegetation index; NDVI = normalized difference vegetation index; OSAVI
= optimized soil adjusted vegetation index; RDVI = renormalized difference vegetation index; RGBVI = red
green blue vegetation index; RVI = ratio vegetation index; WDRVI = wide dynamic range vegetation index;
VDVI = visible band difference vegetation index. 2 Formula variables: BLUE = blue reflectance; GREEN = green
reflectance; RED = red reflectance; REDEDGE = red edge reflectance; NIR = near-infrared reflectance.

2.6. Canopy Nitrogen Weight Modelling

CNW was calculated using the following method [58]:

CNW = LNC×Wd (1)
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where CNW is the canopy nitrogen weight (g/m2), LNC is the leaf nitrogen content (%),
and Wd is the dry biomass weight (g/m2). CNW assumes the plants collected for biomass
around the sample point, within the 0.25 m2 block, have the same amount of nitrogen.
The total biomass per area was used as the dry biomass of wheat plants at early growth
stages (BBCH < 60) since the leaves constitute most of the plant weight. Compared to other
biophysical parameters such as plant nitrate content and plant nitrogen concentration (%),
CNW has been found to have greater correlation with spectral data [28].

RF is an ensemble learning method suited for the classification or regression of large,
nonparametric datasets. Training data are randomly selected from the dataset based on
a user-defined percentage; commonly, 70% of a dataset is used to train a model. From
the training data, many decision trees are generated by the algorithm to determine the
variables’ importance in the regression. Decision trees split at nodes depending on the
independent variable that contributes most to the dependent variable. The validation data
are the remainder of the dataset that is not used in training, and the average output from
decision trees is used to evaluate the model’s performance. Advantages of RF include quick
computation, no overfitting from training data, and high performance in studies [29].

Support Vector Machines (SVM) are supervised learning algorithms used for classi-
fication and regression. SVR uses a decision boundary, known as a hyperplane, to split
classes of training data based on data characteristics. The data points closest to either side
of the hyperplane are known as support vectors, used as training samples to determine the
optimal hyperplane position from the midpoint of the margin. SVR performs modelling
in a high-dimensional space. SVR uses a kernel trick (i.e., the Radial Basis Kernel) for
nonlinear data, placing the data in a dimensional space to separate into groups based on
radial distance between data points. SVR has advantages over simple linear regression
models, as its flexibility with nonparametric data has better modelling capabilities [59].
The modelling for this study was written in the R programming language using R Studio
(Version 4.0.3), an open-source and free Integrated Development Environment (IDE) [60].
For RF, the “randomForest” package was used, and for SVR, the “e1071” package was used.

Modelling was performed separately for MicaSense-based and PlanetScope-based
sensor variables for comparison of UAV and PlanetScope data results. The MicaSense
models used all five MicaSense bands, all 14 VIs listed in Table 1, plant height, LAI,
soil moisture, and topographic metrics, and the dependent variable was the CNW. The
PlanetScope models used all four PlanetScope bands, 11 VIs listed in Table 1 not including
the red-edge based indices (CI_RE, NDRE, RVI2), plant height, LAI, soil moisture, and
topographic metrics, and the dependent variable was the CNW. Measurements of variables
at each sample point were averaged to a 1 m2 scale. Datasets were randomly divided into
70% training set and 30% validation set. The quality of the models was assessed using the
coefficient of determination (R2) and the Root Mean Square Error (RMSE), calculated using
Equations (2) and (3), respectively [61]:

R2 = 1− ∑ (yi − ŷi)
2

∑ (yi − yi)
2 (2)

where yi is the observed value, ŷi is the predicted value, and y is the mean of the observed
values of the dataset; and:

RMSE =
∑n

i=1(ŷi − yi)
2

n
(3)

where ŷi is the predicted CNW value (g/m2), yi is the observed CNW value (g/m2), n is
the number of observations, and i is the index of summation in increments of one.

3. Results
3.1. Nitrogen Statistics

Overall, the canopy N weight for the wheat fields increased in variation during the
fieldwork season (Figure 4). There was a slight decrease in canopy N weight from 6 to
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12 May, likely due to a period of several days of continuous rainfall between samplings.
Rainfall can lead to leaching of soil N from areas around plant roots, in this case reducing
plant N utilization while the biomass continued to increase [62,63]. After 12 May, the farmer
applied fertilizer to the wheat field once before 20 May and, consequently, the canopy N
weight increased during the following weeks. There was an outlier from a sample point on
20 May, which was removed from the dataset for modelling.
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3.2. Soil Statistics

A VitTellus soil health analysis [64] was conducted on the study fields, producing
the following mean values: soil nitrate-nitrogen of 46.81 ppm, mineralizable nitrogen of
29.17 ppm, and water-extracted soil nitrate of 44.38 ppm. A&L Canada Soil Health Index
ratings were in the “Good-High” category, and the soil textural class for the fields was
predominantly sandy loam.

3.3. Regression Models with All Parameters
3.3.1. UAV Regression Models

For the UAV regression models, the first modelling step used all 28 variables including:
the five MicaSense band reflectances, 14 VIs, plant height, soil moisture, LAI, topographic
slope, aspect, profile curvature, plan curvature, TWI #1, and TWI #2. Single-date and
combinations of multi-date datasets were tested to evaluate the temporal effect on models.
A proportion of 70% of each dataset was used to calibrate the RF and SVR models, before
the remaining 30% was used for validation. From the calibrated models (Table 5), RF had
better performance in comparison to SVR; specifically, it had higher R2 and lower RMSE
values overall. The top model performance was that of RF with the combination of 12, 20,
and 27 May resulting in an R2 of 0.96 and an RMSE of 1.07 g/m2. Although the 20/27 May
and 4 June model had a slightly higher R2 of 0.97, the RMSE was considerably greater at
1.76 g/m2. Of the RF and SVR models, that of 20 May had the lowest performance. Of the
SVR models, 12, 20, and 27 May model had the best performance with an R2 of 0.87 and an
RMSE of 2.07 g/m2.
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Table 5. Statistics for the calibration of the UAV canopy nitrogen models with 28 variables as a
function of the date and modelling approach (RF or SVR) 1.

Date Model R2 RMSE (g/m2) (n)

5 May RF 0.91 0.51 22
SVR 0.78 0.70 22

12 May RF 0.92 0.31 33
SVR 0.80 0.46 33

20 May RF 0.85 1.12 33
SVR 0.58 1.89 33

27 May RF 0.95 1.63 22
SVR 0.84 2.43 22

4 June
RF 0.91 2.36 33

SVR 0.81 3.00 33

5 and 12 May RF 0.95 0.55 56
SVR 0.77 0.84 56

12 and 20 May RF 0.94 0.88 67
SVR 0.80 1.53 67

20 and 27 May RF 0.95 1.37 56
SVR 0.79 2.87 56

27 May, 4 June RF 0.95 2.28 56
SVR 0.76 3.86 56

5, 12, and 20 May RF 0.92 0.87 89
SVR 0.79 1.40 89

12, 20, and 27 May RF 0.96 1.07 89
SVR 0.87 2.07 89

20 and 27 May, 4 June RF 0.97 1.76 89
SVR 0.85 3.79 89

1 All models are significant at p-value < 0.001.

The UAV models were then applied to the validation datasets (Table 6). All single
date models for RF and SVR had low performance. This was likely due to the small
number of sample point data from single date sets resulting in the calibration model not
encompassing normal field data variation. The top performing model was RF with the
12, 20, and 27 May data, resulting in an R2 of 0.74 and an RMSE of 2.76 g/m2. Overall,
RF had better performance than SVR and multi-date models had better performance than
single-date models.

Table 6. Statistics for the validation of the UAV canopy nitrogen models with 28 variables as a
function of the date and modelling approach (RF or SVR).

Date Model R2 p-Value 1 RMSE (g/m2) (n)

5 May RF 0.18 NS 0.71 10
SVR 0.06 NS 0.71 10

12 May RF 0.07 NS 0.95 15
SVR 0.14 0.1 0.79 15

20 May RF 0.05 NS 2.28 15
SVR 0.18 0.1 2.14 15

27 May RF 0.25 0.1 4.35 10
SVR 0.03 NS 5.05 10

4 June
RF 0.20 0.1 4.35 15

SVR 0.06 NS 5.66 15
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Table 6. Cont.

Date Model R2 p-Value 1 RMSE (g/m2) (n)

5 and 12 May RF 0.41 <0.001 0.99 24
SVR 0.52 <0.001 0.81 24

12 and 20 May RF 0.66 <0.001 1.72 29
SVR 0.71 <0.001 1.56 29

20 and 27 May RF 0.67 <0.001 2.26 24
SVR 0.55 <0.001 2.38 24

27 May, 4 June RF 0.45 <0.001 5.80 24
SVR 0.30 0.001 6.44 24

5, 12, and 20 May RF 0.37 <0.001 1.58 39
SVR 0.52 <0.001 1.32 39

12, 20, and 27 May RF 0.74 <0.001 2.76 39
SVR 0.61 <0.001 3.50 39

20 and 27 May, 4 June RF 0.74 <0.001 4.12 39
SVR 0.71 <0.001 4.46 39

1 NS = non-significant.

3.3.2. PlanetScope Regression Models

For the PlanetScope regression models, 24 variables were used in the first step, in-
cluding: the four PlanetScope band reflectances, 11 VIs, plant height, soil moisture, LAI,
topographic slop, aspect, profile curvature, plan curvature, TWI #1, and TWI #2. To test
the temporal effects on the models, single-date and multi-date dataset combinations were
used. Taking 70% of the dataset to calibrate the RF and SVR models, overall RF had better
performance to SVR with higher R2 and lower RMSE values (Table 7). Of all models, RF
with the combination of the 12, 20, and 27 May data had best performance with an R2 of
0.96 and an RMSE of 1.10 g/m2. Of the SVR models alone, the 12, 20, and 27 May model
had the highest performance with an R2 of 0.87 and an RMSE of 2.12 g/m2.

Table 7. Statistics for the calibration of the PlanetScope canopy nitrogen models with 24 variables as
a function of the date and the modelling approach (RF or SVR) 1.

Date Model R2 RMSE (g/m2) (n)

5 May RF 0.94 0.40 33
SVR 0.82 0.60 33

12 May RF 0.92 0.30 33
SVR 0.71 0.49 33

20 May RF 0.85 1.23 33
SVR 0.52 2.03 33

27 May RF 0.90 1.89 33
SVR 0.60 3.41 33

4 June
RF 0.91 2.23 33

SVR 0.70 3.80 33

5 and 12 May RF 0.95 0.55 67
SVR 0.76 0.83 67

12 and 20 May RF 0.94 0.78 67
SVR 0.78 1.48 67

20 and 27 May RF 0.94 1.27 67
SVR 0.75 2.57 67
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Table 7. Cont.

Date Model R2 RMSE (g/m2) (n)

27 May, 4 June RF 0.94 1.93 67
SVR 0.74 3.87 67

5, 12, and 20 May RF 0.93 0.75 100
SVR 0.74 1.34 100

12, 20, and 27 May RF 0.96 1.10 100
SVR 0.87 2.12 100

20 and 27 May, 4 June RF 0.95 1.87 100
SVR 0.83 3.68 100

1 All models are significant at p-value < 0.001.

Next, the PlanetScope models were applied to the remaining 30% of datasets for
validation (Table 8). Of all the models, single-date 20 May and 4 June had very low
performance for both RF and SVR. Comparing all RF and SVR models, RF usually had
better performance than SVR except in the single date models of 5 May, 12 May, and 20 May,
and the multi-date model with the three dates combined. The top performing model was
RF with 12, 20, and 27 May data resulting in an R2 of 0.83 and an RMSE of 1.77 g/m2.

Table 8. Statistics for the validation of the PlanetScope canopy nitrogen models with 24 variables as a
function of the date and the modelling approach (RF or SVR).

Date Model R2 p-Value 1 RMSE (g/m2) (n)

5 May RF 0.44 0.001 0.92 15
SVR 0.51 0.001 0.90 15

12 May RF 0.45 0.001 0.62 15
SVR 0.78 <0.001 0.53 15

20 May RF 0.05 NS 2.24 15
SVR 0.38 0.001 1.90 15

27 May RF 0.63 <0.001 2.84 15
SVR 0.50 0.001 3.40 15

4 June
RF 0.07 NS 6.24 15

SVR 0.05 NS 5.54 15

5 and 12 May RF 0.44 <0.001 1.06 29
SVR 0.29 0.001 1.08 29

12 and 20 May RF 0.79 <0.001 1.37 29
SVR 0.71 <0.001 1.03 29

20 and 27 May RF 0.63 <0.001 3.24 29
SVR 0.50 <0.001 3.79 29

27 May, 4 June RF 0.63 <0.001 4.77 29
SVR 0.63 <0.001 4.94 29

5, 12, and 20 May RF 0.50 <0.001 1.73 44
SVR 0.68 <0.001 1.43 44

12, 20, and 27 May RF 0.83 <0.001 1.77 44
SVR 0.67 <0.001 3.16 44

20 and 27 May, 4 June RF 0.75 <0.001 3.64 44
SVR 0.74 <0.001 4.59 44

1 NS = non-significant.
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3.4. Variable Importance Plots

The top performing UAV and PlanetScope regression models with all variables were
both from RF and were multi-date combinations of the 12, 20, and 27 May datasets. Mod-
elling of RF in RStudio can be visualized with a variable importance plot using the “varImp-
Plot()” function. The higher a variable’s IncNodePurity value is, the more important the
explanatory variable is in the prediction of CNW. In the UAV model plot (Figure 5) with
28 variables, plant height was by far the most important predictor, followed by LAI. Red-
edge VIs (NDRE, RVI2, CI_RE) were the third, fourth, and sixth most important predictor
variables, respectively. Of the MicaSense band reflectances, NIR was the most important.
Soil moisture also appeared to be among the top group of important variables with a
greater difference in IncNodePurity compared to the other variables in the plot below. Of
the topographic metrics, TWI #2 and TWI #1 held more importance than the rest.
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Figure 5. Variance Importance plot produced by the UAV RF regression model of data from 12, 20,
and 27 May and 28 variables, using the function varImpPlot() in RStudio. Higher IncNodePurity
values indicate more impact on canopy nitrogen estimation. (1) Please refer to Table 1 for the full
name of vegetation indices. TWI_1, total wetness index #1; TWI_2, total wetness index #2.

The satellite RF regression model plot with 24 variables indicates height as the most
important predictor for CNW (Figure 6). Of the four PlanetScope band reflectances, the
blue band was most important and second-most important overall of all variables, followed
closely by LAI. Overall, VIs and PlanetScope bands were among the most important
variables, while topographic metrics and soil moisture were the least important.
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3.5. Regression Models with Selected Parameters
3.5.1. UAV Regression Models

From the variable importance plot of the best-performing UAV regression model using
12, 20, and 27 May data, combinations of variables were tested in the RF and SVR models.
Evaluating based on thresholds of variable importance, as shown in Figure 5, we selected
variables for the top 7, 8, 9, 13, and 16 variable groups. An additional group containing only
MicaSense band reflectances and VIs was included for comparison as common modelling
approaches in other studies use only spectral variables [3]. Furthermore, 70% of each
variable group dataset was used for model calibration (Table 9). Overall, RF had better
performance than SVR in terms of higher R2 and lower RMSE values. All variable group
models using RF had a high R2 of 0.96 except for the spectral-only variable group with
lower R2. RF models’ RMSE values were also very close, within <0.10 g/m2 difference, the
lowest being the top 9 and top 13 variable groups at 1.07 g/m2. Again, the RF spectral-only
variable group had poorer performance in comparison to other RF models, as its RMSE
value was significantly higher. The SVR spectral-only variable group performed poorly
compared to all the other SVR models. Of the SVR models, the top 7 variable group had
the best performance with an R2 of 0.86 and an RMSE of 2.05 g/m2. The top 8, 9, 13, and
16 variable SVR models had only slightly lower R2 and higher RMSE values compared to
the best SVR model.

The calibrated models were applied to the remaining 30% of datasets for validation
(Table 10). In the validation models, SVR had better performance than RF except for the
spectral-only model. The best-performing model was SVR with the top seven variables,
resulting in an R2 of 0.80 and an RMSE of 2.62 g/m2. Compared to the best model, other SVR
models had close performance, but as more variables were added, the R2 had lower values.



Nitrogen 2022, 3 16

Table 9. Statistics for the calibration of the canopy nitrogen model with 12, 20, and 27 May MicaSense
data and different combinations of variables (n = 89) 1.

Input Variables Model Number of Variables R2 RMSE (g/m2)

Spectral-only: All VIs & 5 MicaSense bands RF 19 0.92 1.50
SVR 19 0.66 3.04

Top 7: Height, LAI, NDRE, RVI2, BNDVI, CI_RE, NIR RF 7 0.96 1.15
SVR 7 0.86 2.05

Top 8: Top 7 + Soil Moisture RF 8 0.96 1.12
SVR 8 0.85 2.21

Top 9: Top 8 + RDVI RF 9 0.96 1.07
SVR 9 0.85 2.13

Top 13: Top 9 + OSAVI, WDRVI, VDVI, RGBVI RF 13 0.96 1.07
SVR 13 0.85 2.10

Top 16: Top 13 + ISR, RVI, MTVI2 RF 16 0.96 1.11
SVR 16 0.85 2.11

1 All models are significant at p-value < 0.001.

Table 10. Statistics for the validation of the canopy nitrogen model with 12, 20, and 27 May MicaSense
data and different combinations of variables (n = 39) 1.

Input Variables Model Number of Variables R2 RMSE (g/m2)

Spectral-only: All VIs & 5 MicaSense bands RF 19 0.50 3.83
SVR 19 0.48 3.87

Top 7: Height, LAI, NDRE, RVI2, BNDVI, CI_RE, NIR RF 7 0.73 2.81
SVR 7 0.80 2.62

Top 8: Top 7 + Soil Moisture RF 8 0.73 2.78
SVR 8 0.78 2.82

Top 9: Top 8 + RDVI RF 9 0.74 2.77
SVR 9 0.77 2.80

Top 13: Top 9 + OSAVI, WDRVI, VDVI, RGBVI RF 13 0.75 2.72
SVR 13 0.77 2.76

Top 16: Top 13 + ISR, RVI, MTVI2 RF 16 0.74 2.73
SVR 16 0.76 2.81

1 All models are significant at p-value < 0.001.

3.5.2. PlanetScope Regression Models

For the UAV regression models using single and multi-date datasets, the best-performing
combination was the model using the 12, 20, and 27 May data with RF. Evaluating based
on thresholds of variable importance, as shown in Figure 6, the selected variable groups for
further model testing included the top 6, 10, 13, 17, and a group containing only PlanetScope
band reflectances and VIs. A proportion of 70% of each variable group dataset was used
for model calibration (Table 11). Of the calibration models, all RF models had the same
high R2 value with low RMSE compared to all SVR models. The best model performance
was RF with the top six variables, with an R2 at 0.96 and an RMSE 1.18 g/m2. For the SVR
models, the best-performing was the combination of the top six variables, resulting in an
R2 of 0.84 and an RMSE of 2.31 g/m2. From the calibration models, the spectral-only SVR
model had the poorest performance with an R2 of 0.77 and an RMSE of 2.81 g/m2.
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Table 11. Statistics for the calibration of the PlanetScope canopy nitrogen model with 12, 20, and 27
May data and different combinations of variables (n = 100) 1.

Input Variables Model Number of Variables R2 RMSE (g/m2)

Spectral-only: VIs & 4 PlanetScope bands RF 15 0.96 1.21
SVR 15 0.77 2.81

Top 6: Height, BLUE, LAI, BNDVI, RDVI, OSAVI RF 6 0.96 1.18
SVR 6 0.84 2.31

Top 10: Top 6 + ISR, MTVI2, NIR, RED RF 10 0.96 1.20
SVR 10 0.84 2.35

Top 13: Top 10 + MSR, GREEN, RBGVI RF 13 0.96 1.21
SVR 13 0.81 2.45

Top 17: Top 13 + RVI, VDVI, NDVI, WDRVI RF 17 0.96 1.26
SVR 17 0.82 2.63

1 All models are significant at p-value <0.001.

The remaining 30% of variable datasets were used for the validation models (Table 12).
The poorest model performances for RF and SVR were from the spectral-only variable
group, resulting in the lowest R2 and highest RMSE values out of all tested. SVR had better
performance compared to RF in the spectral-only, top 6, and top 10 groups, but for the
top 13 and top 17 groups, RF was better. The best-performing model was RF with the top
17 variables, with an R2 of 0.92 and an RMSE of 1.75 g/m2.

Table 12. Statistics for the validation of the PlanetScope canopy nitrogen model with 12, 20, and
27 May data and different combinations of variables (n = 44) 1.

Input Variables Model Number of Variables R2 RMSE (g/m2)

Spectral-only: VIs & 4 PlanetScope bands RF 15 0.66 3.20
SVR 15 0.69 3.09

Top 6: Height, BLUE, LAI, BNDVI, RDVI, OSAVI RF 6 0.72 2.90
SVR 6 0.85 2.17

Top 10: Top 6 + ISR, MTVI2, NIR, RED RF 10 0.83 2.16
SVR 10 0.84 2.06

Top 13: Top 10 + MSR, GREEN, RBGVI RF 13 0.87 2.20
SVR 13 0.86 2.39

Top 17: Top 13 + RVI, VDVI, NDVI, WDRVI RF 17 0.92 1.75
SVR 17 0.91 1.85

1 All models are significant at p-value < 0.001.

3.6. Crop Nitrogen Prediction Maps

To create the crop nitrogen prediction maps, raster layers of each variable were re-
quired. The VI raster layers were created using the raster calculator in PCI Geomatica Banff
from the MicaSense band rasters mosaicked from Pix4Dmapper. To extract raster layers
for height, the Phantom 4 RTK flight processed in Pix4Dmapper includes the option for a
digital surface model (DSM) output. The DSM captures the natural and built features of
the environment. By subtracting the DEM raster from the DSM raster pixel values using
ArcGIS raster calculator, the output raster layer has the height data of the crop [65].

Generating an LAI raster layer is a more involved process. The process is based on
methodology proposed by Song et al. (2020) using a simulated observation of a point cloud
Multiview angle (SOPC-M) designed to obtain a 3D spatial distribution of vegetation and
bare ground points to calculate the gap fraction, followed by the crop’s effective LAI (LAIe),
from a UAV-based 3D point cloud dataset [66]. In ArcGIS, the point data layer was con-
verted to a raster layer using the “Point to Raster” conversion tool to a 2 m × 2 m resolution.
From the linear regression equation, the digital hemispherical photography (DHP) LAIe
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could be calculated using the ArcGIS raster layer to create the final LAI raster used in the
model. For field W3, the LAI layer processing area error unfortunately only covered 12 of
the 16 sample points; thus, the final map produced did not cover all sample points.

Prior to running the regression models in R, the raster layers needed to have the same
resolution and extent for the functions to stack them. All raster layers were run through
the ArcGIS “Resample” tool to 1 m × 1 m resolution, as the CNW variable is based on
a 1 m2 area. Resampling was conducted with the bilinear technique, which is a bilinear
interpolation and determines the new value of a cell based on a weighted distance average
of the four nearest input cell centers. As the LAI raster extent was the smallest of all rasters,
it was used as the output extent reference layer for the ArcGIS “Clip Raster” tool with the
selected option to maintain clipping extent. The columns and rows of the output raster
were adjusted, and the pixels were resampled to match the reference layer exactly. Next,
the ArcGIS “Extract by Mask” tool was used to extract the cell values specifically where
the LAI raster extent pixels held values greater than zero. Thus, each variable layer was
prepared for the R modelling.

For the UAV best-performing model, SVR with the top seven variables included height,
LAI, NDRE, RVI2, BNDVI, CI_RE, and NIR. In R, the “raster”, “rgdal”, and “rasterVis”
libraries were used to generate the final prediction map outputs. The variable raster layers
were stacked using the “raster::stack” function, and the “raster::predict” tool was used with
the selected UAV-based SVR model using the top seven variables. The resulting prediction
rasters for each field were exported as GeoTiff files into ArcGIS to create the final prediction
maps with 1 m × 1 m resolution (Figure 7). The low and high CNW areas are displayed
in red and green, respectively, for distinct contrast between the nitrogen levels. From the
prediction rasters, the predicted CNW values around each sample point were extracted
and compared to the measured values in-field. The resulting RMSE values for W1, W2, and
W3 were 4.27, 2.32, and 3.08 g/m2, respectively.

The best-performing satellite model used RF with the top 17 variables: height, LAI,
11 VIs, and the four PlanetScope bands. Following the same processing steps as the UAV-
based model, the satellite variable raster images were processed to have the same extent
and 1 m × 1 m resolution. As the satellite images began with 3 m × 3 m resolution, much
larger compared to the UAV images, the resulting raster layers had a smoothed appearance.
The final prediction rasters for each field are displayed as maps in Figure 8 with 1 m × 1 m
resolution. From the prediction rasters, the predicted CNW values around each sample
point were extracted and compared to the measured values in-field. The resulting RMSE
values for W1, W2, and W3 were 3.12, 1.79, and 3.08 g/m2, respectively.

Comparing the maps in Figures 7 and 8, it can be seen that there were differences in
the spatial distribution and values of CNW. It appears that the UAV maps show more areas
with low canopy nitrogen weight, while PlanetScope shows more areas with high CNW.
This is likely due to the resampling method, as the UAV’s centimeter-level image resolution
includes spectral data of the visible soil between crop rows, while for PlanetScope images
with coarser meter-level resolution, the pixel values average towards the spectral values of
the crop rather than the soil. The UAV-based nitrogen prediction maps may have lower
performance compared to satellite-based maps because of the volatile weather conditions
during the fieldwork conducted on the week of May 27th. The UAV was flown on different
dates between May 26th and May 29th for each field whenever the weather was suitable,
and the crop spectral characteristics may have changed. However, the satellite images for
the three fields for May 27th were all from the same date and present a more consistent
relationship with the fieldwork data.
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4. Discussion

For this study, the RF and SVM regression methods were used to predict the CNW
of wheat using UAV MicaSense band reflectances, PlanetScope band reflectances, selected
VIs, plant height, LAI, soil moisture, and topographic metrics. The models created were
grouped according to UAV-based and satellite-based data.

For the UAV RF and SVR regression models, calibration was conducted with 28 variables
from single and multi-date datasets. Evaluating the validation models of each dataset, the
performance of UAV single-date models was poor with R2 values of, at most, 0.25 and
overall non-significant results. Combining UAV multi-date data yielded better results, with
the best performance from the RF three-date model of 12, 20, and 27 May resulting in an R2

of 0.74 and an RMSE of 2.76 g/m2. For the PlanetScope RF and SVR models, the calibration
of the models used 24 variables for single and multi-date datasets. Of the validation models,
the single-date models of 20 May and 4 June had the lowest performance. However, the
other PlanetScope single-date models’ performances were much better overall compared to
the UAV single-date models. In general, the PlanetScope multi-date models did not have
significantly better results than its single-date models. The best-performing PlanetScope
model was that which was based on three dates, 12, 20, and 27 May, using RF, with an R2 of
0.83 and an RMSE of 1.77 g/m2. Both the best UAV and best satellite models were from 12,
20, and 27 May data, during which the wheat crops were in the BBCH 23–41 growth stages,
mainly defined by tillering, stem elongation, and the beginning of the booting stage. As
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noted by Hawkesford (2017), the application of nitrogen fertilizer during these early growth
stages before flowering is most conducive to efficient nitrogen use and yield response [67].
The ability to accurately estimate the nitrogen levels of crops during early growth stages
would be most beneficial for farmers.

In the RF variance importance plot of the best-performing UAV model, of all variables,
plant height was the most important predictor of CNW. Song and Wang (2019) also noted
that plant height is useful in estimating phenology, biomass, and yield in addition to
nitrogen uptake in wheat [68]. On the plot, LAI was the second most important predictor
of CNW. LAI has been used extensively in studies to successfully predict crop chlorophyll
content, biomass, and yield [69,70]. The study by Zhao et al. (2014) found a significant
positive relationship between LAI and differences in crop nitrogen content across wheat
growth stages [71]. The gap fraction method of calculating LAI is more accurate during
the earlier growth stages of a crop when the canopy is not so dense, allowing for contrast
between the vegetation and soil or vegetation and sky images [68]. Among the VI’s used in
the model, the red-edge VIs (NDRE, RVI2, and CI_RE) were amongst the most important.
The red-edge region (680–800 nm) has been shown to encompass sharp changes in the
canopy reflectance and can be used to identify important biophysical parameters of the
crop. Nitrogen levels have shown the sensitivity of the red-edge region in estimating leaf
chlorophyll content due to the high absorption of red radiation and high reflectance of
NIR radiation [69,72]. Of the MicaSense bands individually, the NIR band was of highest
importance in the model while other individual bands had little effect. Soil moisture
also appeared as a variable of high importance, and subsequent variables on the plot had
noticeably lower importance. Studies have noted the importance of soil moisture in soil
nitrogen mineralization, crop nitrogen uptake, and utilization [73,74]. Of the topographic
metrics, the topographic wetness indices were most important, while the remaining metrics
had little effect.

In the RF variance importance plot of the best-performing satellite model, similar
to the UAV model, plant height was the most important predictor of CNW, with LAI
following closely. Interestingly, the PlanetScope blue band was the second most important
variable. As the PlanetScope blue band has greater width compared to MicaSense, perhaps
the wider bandwidth captured a change of canopy reflectance in the blue-edge region
(480–517 nm) which was previously noted in the study by Wei et al. (2008) to be related to
crop nitrogen [75]. Other PlanetScope bands in the model had varying levels of importance
interspersed amongst the 11 VIs used. On the plot, other non-spectral variables of soil
moisture and topographic metrics were of least importance to the model.

From the UAV-based RF variance importance plot, groups of variables were selected
for testing in models. Groups of the top 7, 8, 9 13, 16, and spectral-only variables were
modeled, with the group of top seven variables of the SVR model performing the best with
an R2 of 0.80 and an RMSE of 2.62 g/m2. The top seven variables included plant height,
LAI, all three red-edge VIs, BNDVI, and the MicaSense NIR band. Compared to the best
models from studies by Asataoui et al. (2021), Jiang et al. (2019), and Zheng et al. (2018)
using UAV-based spectral variables to estimate wheat nitrogen content, their models had
lower R2 values, ranging from 0.76 to 0.63, and greater RMSE values [24,26,27]. With the
UAV-based best model in this study, significantly lower RMSE is a major advantage in
terms of reducing the costs of nitrogen fertilizer.

The satellite-based variance importance plot was used to select variable groups for
model testing including the top 6, 10, 13, 17, and spectral-only variables. The RF model
group of the top 17 variables had the best performance with an R2 of 0.92 and an RMSE
of 1.75 g/m2. The height, LAI, all four PlanetScope bands, and total 11 VIs were the
variables in the best-performing model. For both the UAV and satellite best-performing
selected-variable models, plant height and LAI were the only non-spectral variables. With
methods for deriving the height and LAI of a wheat crop field from the UAV Phantom
4 RTK imagery, all variables in the top models can be obtained from in-situ, non-destructive,
remote sensing data.
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For both the UAV and satellite spectral-only variable groups, the results were poor with
R2 values <0.50 and significantly higher RMSE values compared to other tested variable
groups. This is consistent with the studies by Astaoui et al. (2021) and Schirrmann et al.
(2016), in which it was noted that, within wheat crops, UAV imagery was limited for the
observation of nitrogen status but had good performance in the monitoring of biophysical
parameters [27,28]. For the UAV validation spectral-only model, the RMSE dropped by 32%
as compared to the best-performing top seven variable model. In the satellite validation
spectral-only model, the RMSE dropped by 45% compared to the best-performing top 17
variable model.

In the final validation of canopy nitrogen models with variable combinations, the
UAV SVR models mostly had greater R2 values but also greater RMSE values compared
to the RF models. In the UAV spectral-only variable group models, RF had better results
than SVR. Considering studies with spectral-only variables for crop nitrogen models, the
results are consistent, with RF yielding better nitrogen level prediction compared to SVR
models [25,29,76]. Only in the UAV best-performing model of top seven variables was
SVR performance better in terms of having both a higher R2 value and a lower RMSE
compared to RF. Of the satellite variable combination models, SVR had better performance
than RF except for the top 13 and 17 variable groups. The best-performing satellite model
was RF with the top 17 variable group. Although it appears difficult to determine if RF
or SVR models are better when built with non-spectral and spectral variables together,
ultimately the ideal result is a model which can most accurately predict canopy nitrogen
in wheat. In both the UAV and satellite models with different variable combinations,
the top variable groups had good overall performances. In comparison to studies with
spectral-only variable models, the variable combination models in this study all had lower
RMSE values. In the context of nitrogen estimation and practical application, lower RMSE
(g/m2) in models is most beneficial for fertilizer management recommendations.

5. Conclusions

In this study, machine learning regression methods were tested to predict wheat
CNW using UAV MicaSense band reflectances, PlanetScope band reflectances, associated
VIs, plant height, LAI, soil moisture, and topographic metrics. For UAV models using
28 variables, the combination of 12, 20, and 27 May data with the RF validation model
produced the best results with an R2 of 0.74 and an RMSE of 2.76 g/m2. From the model’s
variable importance plot, the top 7, 8, 9, 13, 16, and spectral-only variable groups were
tested. The best validation model used SVR with the top seven variables, which included
plant height, LAI, four VIs, and the MicaSense NIR band. For the PlanetScope models using
24 variables, the best performing model was RF with 12, 20, and 27 May data resulting in
an R2 of 0.83 and an RMSE of 1.77 g/m2. Based on the model’s variable importance plot,
the top 6, 10, 13, 17, and spectral-only variable groups were tested. The validation model
with the best performance was RF using the top 17 variables including height, LAI, all four
PlanetScope bands, and 11 VIs.

A common limitation of in-situ agricultural models, including those developed in
this study, are their empirical nature, and applicability can be limited to the dataset they
are built and validated upon. Each field and growing season has different conditions
and factors that affect plant growth, so models will need further testing to determine
their effectiveness in precision agriculture methods. PlanetScope satellite constellation
has also launched, and a third generation of sensors were introduced in 2020, known as
SuperDove, with the potential to capture imagery with eight spectral bands including a
red-edge band. Future work can consider further testing satellite-based nitrogen prediction
models including red-edge VI variables.
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