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Abstract: Efficient nitrogen (N) management is one of the primary objectives of agronomic research
as N is expensive and a major environmental pollutant. Soil microbes regulate N cycling and soil
respiration (SR) measures soil microbial activity. The Comprehensive Assessment of Soil Health
(CASH) soil respiration protocol is a rapid test, and a study was designed to approve this test as
a potential tool for corn (Zea mays L.) N management. Five locations were selected around South
Dakota (SD) where corn received 0, 45, 90, and 180 kg N ha−1 during summer of 2019. Soil samples
were collected before planting and at the V6 corn growth stage to measure SR. We found that N
fertilization increased SR and the highest SR was recorded at Ipswich (1.94 mg CO2 g−1) while
SR was lowest at Bushnell (1.45 mg CO2 g−1). Higher SR was recorded at the sites where no-till
farming was practiced, and soil had higher initial nitrate and organic matter content. SR was weakly
correlated with corn grain yield, which indicated a potential area for future research. We concluded
that split N application or an additional N application at a later growth stage might boost corn
productivity in soil with higher microbial activity.
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1. Introduction

The essentiality of nitrogen (N) in sustaining soil fertility and crop production is
well defined and many agronomic research have been directed toward finding the best
N management for optimal crop yield [1–4]. The most popular way of supplementing
the required amount of N to crops is through the addition of inorganic and/or organic N
sources [5]. However, the trend is changing; with increasing financial and environmental
stresses, understanding of nitrogen use efficiency (NUE) [6–8] and economic optimum
nitrogen rate (EONR) [9–11] is gaining increased attention from crop producers. Therefore,
much agronomic research in recent times has focused on designing an improved and
more efficient N management strategy to enhance the potential of agricultural and food
production systems.

Soil microbes play a major role in N cycling in soil. Fertilizer N can be lost into
the atmosphere through gaseous forms of N, ammonia (NH3), nitrous oxide (N2O), and
dinitrogen (N2) or can leach down through the soil profile or runoff from the soil surface as
nitrates (NO3

−), nitrite (NO2), and ammonium (NH4
+) [12], and microbes play a crucial

part in all of these transformations [13]. Microbial uptake of NO3
− and ammonium (NH4

+)
is an integral part of N dynamics in soil and, therefore, N addition should stimulate soil
respiration (SR) [14]. Furthermore, N application rates could play a major role in shaping
the microbial community structure and overall microbial activity. However, while the
addition of N in soil has been reported to influence SR positively or negatively, many studies
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have reported no influence too [15–17]. A high rate of N application (25 g N m−2 yr−1)
increased SR in a grassland system because of increased root and microbial biomass, and
the ratio of NO3

− to NH4
+, the mineralization rate, was significantly correlated with

SR [18]. Additions of N in an N-limited soil was reported to stimulate an increase in SR
initially, and with time created a C-limited state as N demand diminished [19].

Soil organic carbon (SOC) fractions have been used to determine optimum N rates
for agricultural crop production and studies have found the labile carbon (C) fraction
in soil to influence soil productivity [20–22]. C is essential for every life form on earth
and soil microbes play a crucial role in mineralizing the most labile C fraction first and
then relatively more stable C fractions in soil. Therefore, mineralization of C through
the emission of carbon dioxide (CO2) can be used to measure microbial activity in the
soil [23,24]. SR is also referred to as C mineralization, which is a measure of CO2 emission
and commonly used as a soil health indicator for estimating microbial activity and active
root growth on a global scale [18]. SR represents a major C flux between the soil and
atmosphere [25]. As microbial population and activity increases in soil, the emission of
CO2, i.e., SR, also increases if not limited by available C [26].

Corn (Zea mays L.) is a very important crop in the US and had the highest acreage
among crops grown in 2020 [27]. Therefore, managing N applications in corn production
is one of the primary areas of research in US agriculture. This study was designed to
understand the relationship between N-rate in corn and soil respiration (SR) rate as we
hypothesized that SR might be a potential tool used to determine optimum N rate for corn.
There are limited studies that have reported how soil respiration is related to corn grain
yield or the yield of other cash crops that require N [28]. Therefore, the specific objectives
of this study were i) to determine how soil respiration (microbial activity) was affected by
N fertilization rates in a crop (corn) production system and ii) to report the relationship
between soil respiration and crop yield under different N application rates.

2. Materials and Methods
2.1. Study Sites and Experimental Design

The experiment was laid out in corn fields at five different locations around South
Dakota in 2019: Bushnell (44.331554, −96.652017), Garretson (43.652566, −96.482585),
Howard (44.139415, −97.473298), Ipswich (45.4456786, −99.215861), and Mansfield (45.300989,
−98.662870) (Figure 1). Except for the Bushnell site, which was conventionally tilled, all
other study sites operated under no-till systems. Initial soil test information and additional
site descriptions are given in Table 1. Four different N rates, 0, 45, 90, and 180 kg ha−1

were applied to the corn plots before planting and each N rate was replicated four times at
each location following a randomized complete block design (RCBD). Super-U (Koch™,
Wichita, KS, USA), a slow-release urea fertilizer (46-0-0), was used as the N source that was
broadcasted in the research plots. All plots had 4.6 × 9.2 m2 dimensions. Soil samples from
the top 0–15 cm of each plot was randomly collected at the V6 corn growth stage for the
soil respiration assay. Corn grain yields were recorded for the N rates.
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Figure 1. (a) World map with corn production zones (United State Department of Agriculture For-
eign Agricultural Service); (b) United States Corn Production Map 2015-2019 (United State Depart-
ment of Agriculture Foreign Agricultural Service); (c) topographical map of South Dakota show-
ing the five study locations in 2019. 

Figure 1. (a) World map with corn production zones (United State Department of Agriculture Foreign
Agricultural Service); (b) United States Corn Production Map 2015–2019 (United State Department of
Agriculture Foreign Agricultural Service); (c) topographical map of South Dakota showing the five
study locations in 2019.
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Table 1. Site descriptions and mean values of initial soil parameters in the corn plots at five study locations around South
Dakota during the 2019 growing season.

Parameters Bushnell Garretson Howard Ipswich Mansfield

Tillage practice Conventional No-till No-till No-till No-till
Grazing history No No No Yes Yes

Total precipitation (mm, May–Sep) 608 538 567 484 484
Soil pH 5.5 5.3 5.7 6.4 6.1

Electrical conductivity (mS cm−1) 0.1 0.2 0.2 0.2 0.3
Soil organic matter (%) 3.3 3.7 5.5 5.3 4.0

Soil nitrate (kg ha−1, 0–60 cm) 29 28 117 61 68
Available phosphorus (ppm, 0–15 cm) 13 12 12 24 6.3
Available potassium (ppm 0–15 cm) 94 120 172 273 261

Soil sulfate (kg ha−1, 0–60 cm) 60 55 19 53 70
Date of planting 5/8/2019 5/18/2019 5/12/2019 5/14/2019 5/8/2019

Date of fertilization 5/3/19 5/16/2019 5/16/2019 5/3/2019 5/3/2019
Date of soil (Corn V6 stage) sampling 6/19/2019 6/25/2019 6/24/2019 6/18/2019 6/18/2019

Date of harvest 11/12/2019 11/08/2019 Not harvested 11/16/2019 11/16/2019

2.2. Incubation Study and Measuring Soil Respiration

Soil respiration was measured following a modified version of the Comprehension
Assessment of Soil Health (CASH) protocol [29] where instead of a 4-day soil incubation, a
7-day soil incubation was performed to compare the efficiency of this methodology with the
well-established modified Haney method [30]. Two sets of soil incubations were carried out
following the two methods simultaneously to minimize error. Dried and ground (<0.2 cm)
soil (20 g) was weighed on a perforated alumina tray and incubated inside glass mason
jars (473 mL, Ball®, Rubbermaid Inc., Atlanta, GA, USA) at room temperature (~25 ◦C).
Potassium hydroxide (KOH, Millipore Sigma, Germany; 0.5 M) and sodium hydroxide
(NaOH, Fisher Scientific International L.L.C., Waltham, MA; 0.5 M) trap solutions were
used for the CASH and Haney methods, respectively, and water was added to start the
incubation. After seven days, the readings were recorded. Electrical conductivities of the
trap solutions (KOH) were measured for the CASH analysis. NaOH was titrated against
a 0.1 M hydrochloric acid (HCl) solution using phenolphthalein as the indicator (pink in
basic solution and colorless in acidic solution) for the Haney method.

2.3. Statistical Analysis

Research data were analyzed using the R 4.0.2 software tool [31]. The data were
checked for normality using the Shapiro–Wilk test [32] and then fitted into linear mixed
models using the ‘lmerTest’ package [33]. In the mixed model [Equation (1)], replication
was the random effect, while respiration, yield, and location were used as the fixed factors.
Therefore, the model used in statistical analysis was defined as:

N-rate = lmer(Respiration ~ N-rate*Location + (1|Replications), data frame) (1)

All the graphs were prepared in either Microsoft Excel or in R 4.0.2 using the ‘ggboxplot’
package.

3. Results and Discussion
3.1. Comparison between CASH Protocol and Haney Method

From the comparison, we found that the CASH and Haney methods correlate well
(R2 = 0.98) in estimating SR (Figure 2) and can be used as a standardized method in
estimating SR; similar findings were reported by [23]. The CASH method is comparatively
rapid and recent; therefore, we used this method to determine the impact of N rate on SR
during corn growing season. In conclusion, the CASH method can be a potential choice to
measure in other ecological studies, especially when SR is used as a soil health indicator.
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Figure 2. Comparison between modified CASH protocol [29] and modified Haney method [30] in
estimating soil respiration.

3.2. Impact of Nitrogen Fertilizer Application Rates on Soil Respiration

Soil respiration increased with increasing N rates when averaged over the five loca-
tions in this study. The highest mean SR value (1.75 mg CO2 g−1 soil) was found under the
highest N application rate (180 kg N ha−1) followed by the 90 kg N ha−1 rate, and these
values were significantly higher than the 45 kg N ha−1 and 0 kg N ha−1 application rates
(Figure 3). Similar outcomes were reported by [18,34–36] as they reported increases in SR
with N fertilizer addition. However, this finding did not agree with several recent research
conclusions that reported decreases in SR rate with N fertilizer applications in diverse
agroecosystems ranging from forest to corn production [23,37–40]. Furthermore, [18] re-
ported the NO3

− or NH4
+ forms of N affected SR in Chinese grasslands while increasing SR

through additions of N, but Ramirez et al. [39] reported that decrease in SR rates following
N addition did not depend on the sources of N. Therefore, positive, negative, and neutral
impacts of N rate on SR were found under diverse environmental conditions and it can
be concluded that along with availability of N, other soil and environmental conditions
dictate SR. Our research outcomes followed another recently published report by [23] as
they reported increases in SR with additions of N fertilizers in one of their study sites was
due to higher C storage in the soil. Additional inorganic N (fertilizer) in combination with
high soil organic matter (SOM) content (Table 1) in soil enhanced SR in our study sites.

Overall, when the study sites were considered separately, SR rates did not significantly
trend with N fertilization rates (Table 2), which also was reported by [23] where they
reported 45 of their 49 study sites did not show significant differences in SR with N
fertilizer additions. Similar conclusions were derived from our study as we did not find
significant differences in SR among rates of fertilizer N when each site was considered
separately. However, we found significant differences among SR values under different
N fertilization rates. In addition, the mean SR values among the five study locations
varied significantly (Table 2). The lowest mean SR (1.45 mg CO2 g−1 soil) was found at
the Bushnell site, the only site that was conventionally tilled, and the highest mean SR
value was found at Ipswich (1.94 mg CO2 g−1 soil) followed by Howard (1.80 mg CO2 g−1

soil) (Table 2). This outcome supported an earlier research article published by [41] who
reported that minimal and no tillage resulted in higher SR compared to the conventionally
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tilled sites. In this study, a potential contributing factor was high SOM and initial soil
nitrate content in the soil as the highest SOM and soil nitrate status was found at Howard
(5.5% and 117 kg N ha−1) and Ipswich (5.3% and 67 kg N ha−1). It was also noted that
these sites practiced under no-till systems and, therefore, overall soil health (better soil
biological health, more carbon and organic matter in the soil, etc.) was expected to be
higher than at conventionally tilled sites.
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Table 2. Mean soil respiration (mg CO2 g−1 soil) values at the V6 corn growth stage under 0, 45, 90, and 180 kg N ha−1

nitrogen fertilizer application rates at five locations, Aberdeen, Bushnell, Garretson, Howard, and Ipswich, around South
Dakota in 2019.

Locations
Nitrogen Rates

0 kg N ha−1 45 kg N ha−1 90 kg N ha−1 180 kg N ha−1 Mean (Location)

Bushnell 1.20 (0.17) 1.52 (0.17) 1.55 (0.12) 1.54 (0.13) 1.45D
Garretson 1.43 (0.08) 1.50 (0.08) 1.58 (0.19) 1.61 (0.09) 1.53CD
Howard 1.85 (0.37) 1.65 (0.19) 1.84 (0.16) 1.85 (0.20) 1.80B
Ipswich 1.88 (0.22) 1.85 (0.11) 2.03 (0.10) 1.99 (0.15) 1.94A

Mansfield 1.65 (0.14) 1.49 (0.04) 1.65 (0.08) 1.76 (0.18) 1.64C
Mean (N rate) 1.60b 1.60b 1.73a 1.75a

p-values
Nitrogen rate

Location
Nitrogen rate × Location

0.01615
1.745 × 10−9

0.55176

Nitrogen rate mean values followed by same lowercase letters are not significantly (p < 0.05) different; location mean values followed by
same uppercase letters are not significantly (p < 0.05) different; standard deviation Values are given in the parentheses beside the mean
values in the tables.
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3.3. Corn Grain yield and Nitrogen Application Rate

Corn grain yield was significantly increased with higher N application rates (Table 3).
The highest yield (10.7 mg ha−1) was recorded under 180 kg N ha−1 while the lowest
yield (9.3 mg ha−1) was recorded under the plots that did not receive any N fertilization.
This finding confirmed previous reports of higher corn grain yield following increased
N application rates [42,43]. Corn yields ranged from 11.9 to 12.9 mg ha−1 at Mansfield
(mean 12.4 mg ha−1), from 10.9 to 12.7 mg ha−1 at Bushnell (mean 11.5 mg ha−1), from
9.61 to 10.5 mg ha−1 at Garretson (10.0 mg ha−1), and from 4.87 to 6.62 mg ha−1 at Ipswich
(5.8 mg ha−1). The corn plots at Ipswich were affected by herbicide drift, therefore, the corn
stand was poor and ultimately final yields were significantly lower than other locations.
We also could not harvest the corn plots at Howard due to prolonged wet soil conditions
later in the growing season (Table 1). Overall, we observed N fertilization responses from
corn grain yields up to a rate of 180 kg N ha−1

. However, we did not have very high N
fertilization rates, for example, over 250 kg N ha−1, therefore, we cannot comment on
economic optimum nitrogen rate (EONR).

Table 3. Mean corn yield (Mg ha−1) values under four different nitrogen application rates, 0, 45, 90, and 180 kg N ha−1, at
five locations, Aberdeen, Bushnell, Garretson, Howard, and Ipswich, around South Dakota in 2019.

Locations
Corn Yield (Mg ha−1)

0 kg N ha−1 45 kg N ha−1 90 kg N ha−1 180 kg N ha−1 Mean (Location)

Bushnell 10.9 (1.4) 11.3 (2.3) 11.2 (1.2) 12.7 (0.7) 11.5A
Garretson 9.61 (2.2) 9.93 (2.2) 10.1 (0.5) 10.5 (1.4) 10.0B
Ipswich 4.87 (0.7)) 5.18 (1.4) 6.43 (0.8) 6.62 (0.6) 5.8C

Mansfield 11.9 (0.8) 12.2 (0.8) 12.7 (0.2) 12.9 (0.3) 12.4A
Mean (N rate) 9.31b 9.67ab 10.1ab 10.7a

p-values
N rate

Location
N rate × Location

0.881
1.868 × 10−14

0.991

Nitrogen rate mean values followed by same lowercase letters are not significantly (p < 0.05) different, location mean values followed
by same uppercase letters are not significantly (p < 0.05) different; standard deviation Values are given in the parentheses beside the
mean values in the tables. P.S. Corn plots at the Howard, SD, site could not be harvested due to wet field conditions later in the 2019
growing season.

3.4. Soil Respiration Rate and Corn Grain yield

Our study revealed that SR at the V6 corn growth stage was negatively correlated
with corn yield under all four N application rates, 0 kg N ha−1 (R2 = −0.40), 45 kg N ha−1

(R2 = −0.09), 90 kg N ha−1 (R2 = −0.42), and 180 kg N ha−1 (R2 = −0.18) (Figure 4a) when
we included data from four sites (no yield data from Howard site), including Ipswich.
Other published reports showing correlations between SR and corn yield or other crop
yields are very limited. Sanyal et al. (2019) [28] reported that SR in cover cropped plots
before corn planting was positively correlated with grain yield due to the additions of
cover crop biomass that provided C for microbial activity and respiration. In this study,
we measured SR at the V6 corn growth stage on plots where no cover crops were grown,
therefore, the negative correlation was probably due to higher microbial activity that
immobilized labile N and resulted in lower N availability to corn at later growth stages,
thus lowering corn grain yield (Figure 3). We also discussed that lower yields in Ipswich
were strongly influenced by herbicide drifts, and data from the Ipswich site might have
influenced this negative correlation. When we excluded the data from the Ipswich site,
we found positive correlations between SR at the V6 corn growth stage and corn yields
(Figure 4b), which align with the report published by Sanyal et al. (2019) [28]. Therefore,
we could not draw any definite conclusion on relationship between SR and corn yield, and
more studies should be conducted to fully understand the relationship between SR and
yields from crops that require N.
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4. Conclusions 
Our study established that the Comprehensive Assessment of Soil Health (CASH) 

soil respiration protocol can be used as a rapid method to estimate soil respiration. We 
also found that soil respiration is dependent on available nitrogen in soil and nonlimiting 
soil carbon and nitrogen. Soil respiration rate increased with inorganic nitrogen additions 
in the corn production systems. This study also revealed that soil respiration rate was 
correlated with corn yield, but this relationship was influenced by the study sites. An ar-
gument could arise from these conclusions that a split-nitrogen application or an addi-
tional nitrogen application might be necessary at the later corn growth stages to improve 
corn grain yield, especially in soil with high microbial activity. This split-dose or addi-
tional nitrogen could help the crop to produce higher yields if microbes immobilize the 
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Figure 4. Correlations between soil respiration (mg CO2 g−1 soil) at the V6 corn growth stage and corn yield (Mg ha−1)
under four N application rates, 0, 45, 90, and 180 kg N ha−1, in all the study sites combined (a) including Ipswich site and
(b) excluding Ipswich site.

4. Conclusions

Our study established that the Comprehensive Assessment of Soil Health (CASH) soil
respiration protocol can be used as a rapid method to estimate soil respiration. We also
found that soil respiration is dependent on available nitrogen in soil and nonlimiting soil
carbon and nitrogen. Soil respiration rate increased with inorganic nitrogen additions in the
corn production systems. This study also revealed that soil respiration rate was correlated
with corn yield, but this relationship was influenced by the study sites. An argument could
arise from these conclusions that a split-nitrogen application or an additional nitrogen
application might be necessary at the later corn growth stages to improve corn grain yield,
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especially in soil with high microbial activity. This split-dose or additional nitrogen could
help the crop to produce higher yields if microbes immobilize the labile nitrogen pool in
the soil during critical reproductive growth stages. Therefore, nitrogen can be managed
more efficiently and more economically if the soil microbial activity is known, but more
research is required. In conclusion, this study opened a new avenue to investigate the
relationship between soil respiration and economic returns such as grain yield from crop
production systems.
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