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Abstract

Aiming at the synchronization problem of fractional time-varying perturbation systems, an
improved WRBF neural network was proposed based on the wavelet function and radial
basis function (RBF). Then, the adaptive controller and updated law are derived based
on the WRBF network. It is used to approximate functions and adjust the correspond-
ing parameters in the controller. Based on Lyapunov and Barbalat stability theory, the
synchronization of a fractional system with time-varying perturbation is proved effectively.

Keywords: fractional chaotic system; synchronization; WRBF; neural network; time varying
perturbation

1. Introduction

With the continuous development of technology, the application of fractional calculus
in engineering practice and physics has become a hot topic [1-5]. With the upsurge of
studying fractional calculus which has been extended to chaotic systems, fractional chaotic
systems have seen broad applications in image encryption [6], electrical circuit [7], secure
communication [8], biomedical [9], neural network [10], and other fields. Synchronization
is one branch of nonlinear science [11], its application scope includes quantum communica-
tion [12], biological neural network [13], physical internet [14], etc. Various synchronization
control methods have been proposed, which mainly include parameter identification
method in [15], hybrid projective combination synchronization method in [16], adaptive
sliding mode control approach in [17], Lyapunov-based approach in [18], H* synchroniza-
tion approach in [19], fuzzy feedback control method in [20], modified projective function
synchronization method in [21], active parameter identification method [22], etc. The above
methods are all about synchronization of fractional systems. Whether they are suitable for
fractional uncertain chaotic systems with external disturbances remains to be studied.

From the practical perspective, the fractional chaotic system is of practical significance
for investigating dynamical behavior and its synchronization. In Ref. [23], a parameter
identification controller is designed to obtain the synchronization of isomer system in the
case of multiple disturbance terms, which realizes combined synchronization in a finite
time. Ref. [24] uses the idea of multi-switch sliding mode control to directly eliminate
nonlinear terms and realizes the combined synchronization of fractional system with
external interference, but its control cost is relatively high. In Ref. [25], the inverse matrix
method was used to realize passive synchronization of a fractional memristive neural
network. However, the controller needs to know the coefficient matrix of the linear part
between the driving and response systems, which is highly dependent on the system
model. When there are uncertainties or external disturbances, the method finds it difficult
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to achieve synchronization. Ref. [26] uses a fuzzy control method to realize fixed-time
synchronization. However, the design of this controller is complicated, which is not
conducive to its implementation in engineering. In Ref. [27], a discrete time-varying
observer was designed to obtain the impulse synchronous control of fractional systems
in the case of multiple disturbance terms. The observer realized impulse synchronization.
In addition, all the above control methods are based on uncertain or unknown systems,
or there is aging and decay of components in the operation process of the system. The
above factors make the ideal model. On the one hand, the RBF neural network has been
proven to approximate any continuous function [28,29]; based on the above considerations,
this manuscript mainly studies the synchronous control of uncertain fractional chaotic
systems based on an improved RBF neural network and Wavelet function, that is, wavelet
radial-based function neural network. The asymptotic synchronization of a fractional
uncertain chaotic system is realized. The novelty in the manuscript under review is on the
focus of two parts:

(1) Animproved RBF neural network with a wavelet function is proposed.

(2) Based on the Barbalat lemma, an adaptive WRBF neural network controller and
adaptive law are designed. The designed controller can obtain the synchronization of
fractional systems under the condition of external disturbance.

2. Preliminaries

Definition 1 ([30]). The Caputo transformation is described as

SO = [ (6= 0" f(d/Ta), )

The fractional derivative of Caputo [30] is

__ 1 t ()
FDUO = =gy | @

where I'(z) = fooo t*~le~tdt, and n denotes n-order.
The structure of WRBF [29-32] is depicted in Figure 1.
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Figure 1. The structure of WRBF [29-32].
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H;(x) is given as

e — (1 ]=m I = gl ;
i(x) = - ‘Tz‘Z exp _T’? , ©)

The output y; is given as

g T
]/] = ij,-Hi(x) = W] H(x), (4)
i=1

N m
Q = Q+£A = Zwl,]Hl,](x) —+ EA = WH(x) + gAli = 1/2/' - (5)

j=1

where x € R", y € R™, H(x) is the output vector, L denotes the number of hidden layers,
W; = [wﬂ, Wi, w]-q]T, m denotes the number of output layers, and y; and o; express the
center and width, respectively. Figure 2 shows the responses of WRBF and RBE. The un-
known function Q(t, X) will be estimated by the WRBF neural network, in which according
to Equation (14), the error of estimation can be expressed as W;H; + €5 — WH = WH +¢,.

1

RBF
--—s--- WRBF
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2
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X
Figure 2. The responses of WRBF and RBF.
3. Synchronization Controller Design
3.1. Description of Synchronization Control Problems
Two fractional systems are considered.
Driven system
Dx = f(x) + dp. (6)
Response system
D]y = g(y) +ds + u. @)

where d,, and d; are external disturbances, u(t) is the controller. The error e = y — x.

e=le, ey -, en}T. When tlim lle|| = 0, that is, when the synchronization error asymptoti-
—00

cally approaches zero, Systems (6) and (7) can realize synchronization.
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3.2. Controller Design with WRBF
The error
Die = g(y) — f(x) +ds(t) — dm(t) +u(t), ®)
Let
Q=2g(y) — f(x) +ds(t) — du(t), ©)
where Q is an unknown nonlinear function; then, Equation (8) can be rewritten as
Dle=Q+u(t), (10)

The uncertain function Q is approximated by Equation (5) of the WRBF neural
network.
Qi =W/H, (1)

where W; is the weight vector of the WRBF network. W expresses its optimal estimation
parameter, and the optimal estimation is

Qr = WiTH, (12)
And defining W; = W; — W, one obtains
Wi =W, (13)
The synchronization controller is designed as
ui(t) = W H — nisgnlei(t)] — 6,D] e(t), (14)

where 77; is the optimal constant and ¢; is the estimated value of feedback gain ¢;. The inte-
ger order adaptive laws, the estimated value of the upper bound of optimal approximation
error, and the estimated value of feedback gain are, respectively, as follows:

W; = k[D! " e;(1)]H, (15)
;= miD] ei(t)], (16)
51' = Tli[thilEi(t)f, (17)

where k;, m;, n; > 0 are the adjusting parameters of the adaptive update laws, respectively.

Theorem 1. Given the initial conditions, under the action of the designed adaptive WRBF neural
network controller (14) and adaptive laws (15)— (17), the synchronization control of (6) and (7) can
be realized.

Proof. The synchronization controller (14) can be substituted into Equation (10), and one has

DYe;(t) = Qi — WP H — yisgnle; (t)] — ;DI "ei(t), (18)

According to Equations (5) and (18), one obtains
Dle;(t) = ¢ — WIH — n;sgnle;(t)] — 5ith71€i(t), (19)

where ¢; = ¢; — ¢;.
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Define Lyapunov function as follows:

n

Y 1 (6: —65)%,  (20)

i=1 1’11

_ 2 18
DI e (1)] N +5)
1 i=1"

W?Wi-l-

I\J\H

_|_

N“y_x
I\)\’—‘
3‘»4

=

1
V==
2!

L

i

where ¢} and §; are constants. The derivative of both sides of Equation (20), one has

W“;—\

n 1 n
2 (D] "ei(t)][D]e; ()] + Y
i=1 i=1

T no1
wl-Tw Zg ;71+2 5—5*51. 1)
i=1

When Equation (19) and update laws (15)—(17) are substituted into Equation (21),
one has

V:afUﬂAQWK&—ﬂfH—m%Ma@)—&UF%#D41§ﬁﬂKDT%MDH}%
% (=€) [P el] + £ (6-07) DI ee)]
mm—éwﬁmmﬁﬁigﬂmﬂaﬂ—é@pfmﬂz (22)

i=1
—l—i {(Dﬁflei(tDWiTH} + ')Z:1 (n; — Sf) {Df*l\ei(t”] + ié (6; — 5:) [Dfilei(t)r

= ¥ alDf (] - % & [D )] - £ o [Df o),
i=1 i=1

i=1

AsO < |g;| < e, DI 'e;(t) < DI ei(H)],

. n - n - n 7 2
V< ¥ elDfe)] - ¥ e [ DI ei(t)l| — 0 & 67 DI ei(t)]
i=1 i=1 i=1

- _é o [DI e(h)]” (23)

-y 5[D?‘1ei(t)r <0,
i=1

where § = min{4},83,...,6;}. One obtains

[pi 0] < v, @9

0 M:

1
24
— 2 _ _
Thus, §[D] 1ei(t)] <V(t)<V(0),D] 1ei(t) is bounded. Similarly, W;, ;, and J; are
: _ 2
bounded. The integral of the inequality V(t) < — i s[D] lei(if)] , one obtains
i=1

V() - V(0) < 5/ Z D7 e;(7)) dt < 5/ D7 e;(7)) dx, (25)

_ 2
According to Equation (25), lim DY lel- T)] dt <V(0)/6— 1imV(t)/ < oo, that is,
g q ; t >
—r00

t—o0
D?ilei(t) € Ly. As such, one has

—T
|pten| < W

-1
1+ 16| ei(t)

, (26)

According to Equation (3), the function ||H|| is bounded and D]e;(t) is bounded.
Df_lei(t) € Ly N Lo and DYe;(t) € Leo. According to the Barbalat theorem, one has

lime;(t) =0, (27)
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Thus, the synchronization error asymptotically approaches zero. The proof is finished.

4. Simulation

For simulation, let the fractional chaotic system be

Dfxl =
D?XZ =
D?X3 =

—axqy + xx3 + dpy (1)
cx1 — ax1x3 + dpp (£)
X1Xp — bxz + dm3(t)

(28)

When the parameters ¢ = 0.91,a = 5, b = 2, ¢ = 34, initial value x(0) = [1,2,3]T.
Equation (28) appears chaotic in Figure 3. The bifurcation diagram (BD) of g is shown in

Figure 4.
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Figure 3. Time-domain response and phase diagrams of Equation (27). (a) t, x1(t),(b) x1, x2, (¢) X2, X3,

(d) x1, X2, X3.
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Figure 4.

BD of Equation (27) with 4.
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As the time-varying perturbation is added, the driven system can be described as

DJx; —5x1 + xpx3 0.1sin(t) + cos(t)
D]xy| = |34x; —5x1x3| + [0.1sin(t) +cos(t) |, (29)
D]x3 X1Xp — 2x3 0.1sin(t) + cos(t)

and the response system with time-varying perturbation is given as

Dy, —5y1 + y2y3 0.2sin(t) + cos(2t) uq ()
Dlya| = |34y; — 5y1ys | + |0.2sin(t) + cos(2t) | + |ua(t) |- (30)
D]y, YViy2 — 2ys 0.2sin(t) + cos(2t) uy(t)

In numerical simulation, the hidden layer neuron is set to 9, y =[-2, —1.5, =1, —0.5, 0,
05,1, 1.5, 2], and the width 0; =07, G=12,..... 9). Using controller (14) and the adaptive
update laws (15)-(17), the adjusting parameters of the adaptivelaw k; =1, m; =1, n; = 0.1,
and the weights of the RBF neural network W;(0) = 1. The initial values of the adaptive
law #;(0) = 5, 6;(0) = 0.1. From Figure 5, it is observed that the synchronization error
converges quickly, which indicates that the designed WRBF neural network has a good
approximation effect.

4 T T r T T I
e, ()
———-&,(t)
3 e,(t)

Figure 5. The error e; between (29) and (30).

5. Conclusions

In summary, an improved RBF neural network using a wavelet function for time-
varying perturbation systems was proposed. A controller was designed. In stability
analysis, the derivative of the corresponding Lyapunov function was directly used to avoid
the fractional derivative, and the error system asymptotically reached zero by using the cor-
relation lemma. The controller designed in this paper is independent of the system model
and can realize synchronous control under completely unknown external disturbance.

Funding: This project was supported by the “Four New” Research Fund of Guangxi Medical
University, grant number SX202324.
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