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Abstract

DNA methylation is an epigenetic modification where a methyl group is added to a DNA
molecule, typically at the cytosine base within a CpG dinucleotide. This process can
influence gene expression without changing the underlying DNA sequence. Essentially,
methylation can act like a switch that regulates which genes are active in a cell. DNA methy-
lation (DNAm) models often describe the dynamic changes of methylation levels at specific
DNA sites, considering methylation and demethylation processes. A common approach
involves representing the methylation state as a continuous variable, and modelling its
change over time or in response to various factors using differential equations. These equa-
tions can incorporate parameters such as the methylation and demethylation rates, factors
like DNA replication, the influence of regulatory proteins, and other related parameters. Un-
derstanding DNAm dynamics in relation to age is crucial for elucidating ageing processes
and developing biomarkers. This work introduces a theoretical framework for modelling
DNAm dynamics using a fractional calculus approach, extending standard models based
on the integer-order differential equations. The proposed fractional-calculus representation
of the methylation process, defined by the fractional-order differential equation and its
solution based on the Mittag—Leffler function, provides improved results compared to the
standard model that uses a first-order differential equation, which contains an exponential
function in its solution, in terms of the comparison criteria (sum of absolute errors, sum
of squared errors, mean absolute percentage error, R-squared, and adjusted R-squared).
Moreover, the Mittag—Leffler model provides a more general representation of DNAm
dynamics, making the standard exponential model only one specific case.

Keywords: physics of epigenetics; fractional calculus; DNA methylation; nonlocality;
memory effect; complexity

1. Introduction

Epigenetics describes mechanisms of heritable changes in gene expression that do
not involve mutations in the nucleotide sequence, and thus, do not alter the DNA code
itself. Instead, they involve chemical modifications to DNA or the proteins that DNA
wraps around (histones), thereby regulating gene activity, which affects how much, or if
at all, a gene is transcribed into RNA and ultimately translated into a protein. Epigenetic
changes are reversible and can be influenced by various factors (see, e.g., [1] and the
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historical references therein). The physics of epigenetics involves applying principles
from mechanics, statistical physics, polymer science, and dynamic systems theory to
understand the complex and dynamic nature of epigenetic regulation [2,3]. By integrating
these physical models with biological data, researchers aim to unravel the mechanisms
behind gene regulation, cellular memory, and development, providing a deeper and more
quantitative understanding of how epigenetic modifications control biological processes.
Examples of mechanisms that cause epigenetic changes are DNA methylation and histone
modifications, each of which modifies how genes are expressed.

DNA methylation (DNAm) refers to the attachment of a methyl group to C-5 of the
cytosine base, and because the cytosine-phosphate-guanine sequence (CpG) generally ex-
hibits a higher methylation level than other cytosines, it is also known as CpG methylation.
DNAm is an essential epigenetic modification that plays a significant role in regulating
gene expression and preserving genomic stability. The CpG sites, which are regions in DNA
where a cytosine nucleotide is followed by a guanine nucleotide, are often clustered in
areas called CpG islands that are characterised by a high occurrence of CpG dinucleotides
compared to the rest of the genome. The methylation level at a particular site is typically
expressed as a beta value, derived from methylated and unmethylated signal intensities.
The DNA methyltransferases (DNMTs) enzymes catalyse the addition of methyl groups
to cytosine, while enzymes like ten-eleven translocation (TET) proteins can reverse the
methylation process through demethylation.

As aberrant DNAm patterns have been linked to various diseases, including cancer
and neurological disorders, DNAm has been extensively studied, resulting in evidence of
age-related hypo- or hyper-methylation at specific CpG sites or islands; thus, many models
have been developed to estimate age based on methylation patterns [4-10]. These findings
have laid the groundwork for the development of epigenetic biomarkers of ageing, also
known as epigenetic clocks. An epigenetic clock as a tool that measures the rate of ageing
in cells and tissues by examining DNAm patterns, enabling the assessment of biological
age (also called the epigenetic age or DNAm age), which may differ from chronological
age, and can be used to predict lifespan and identify individuals with accelerated ageing.

The “first generation” of epigenetic clocks for predicting chronological age based
on DNAm patterns is mainly represented by Horvath’s DNAmAge [11] and Hannum's
clock [12], both developed in 2013. Horvath’s clock, based on DNAm at 353 specific
CpG sites, is a multi-tissue clock, meaning it can be used across various tissues. On the
other hand, Hannum’s clock is based on DNA methylation patterns at 71 CpG sites in
white blood cells, making it specific to blood. The “second generation” of epigenetic
clocks, such as the DNAm PhenoAge [13] and DNAm GrimAge [14], are recognised
for using not only epigenetic markers like DNA methylation but also functional stages
(e.g., smoking) alongside chronological age for estimation. Levine’s PhenoAge focuses on
clinical biomarkers associated with age-related diseases and mortality, while the GrimAge
clock represents a linear combination of DNAm-based surrogate biomarkers for health-
related plasma proteins, smoking pack-years, sex, and chronological age, making it superior
to any other epigenetic clock in “predicting death”.

As an alternative to DNAm-based clocks, epigenetic clocks that rely on changes in
histone marks have been proposed [15]. The telomeres, nucleoprotein structures located
at the ends of chromosomes, should also be noted, as telomeres shorten each time cells
divide, making the telomere length a popular biomarker of ageing [16-19]. On the other
hand, it should be noted that DNAm-based epigenetic clocks demonstrate significantly
higher precision than telomere length measures in estimating both chronological and bio-
logical age. Methylation clocks, such as Horvath'’s pan-tissue clock [11], typically achieve
strong correlations with actual age (+ > 0.8) and mean absolute errors of only a few years,
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making them among the most accurate molecular age markers. In contrast, leukocyte
telomere length (LTL) shows only modest correlations with age (e.g., ¥ = —0.3 in [20]) and
is subject to technical variability and confounding factors such as DNA extraction methods.
Furthermore, for example, the DNAm-based estimators of telomere length (DNAmMTL)
outperformed measured LTL in predicting age-related outcomes like mortality and heart
disease, with substantially stronger associations (r ~ —0.75 for DNAmMTL vs. r =~ —0.35
for LTL in [21]). Collectively, these findings underscore that methylation-based epige-
netic clocks provide superior accuracy and biological relevance compared to conventional
telomere-length biomarkers.

Fractional calculus, a generalisation of classical calculus, involves derivatives and inte-
grals of noninteger order, making this mathematical tool particularly suitable for modelling
processes with anomalous and complex behaviour, including memory effects and heredi-
tary properties (see, e.g., [22-30]). The mathematical framework of fractional calculus, with
its noninteger order derivatives, is particularly well-suited to describe complex behaviours
and interactions in biological systems that often operate out of equilibrium, such as DNA
methylation, especially during ageing or disease progression. Traditional models assume
a steady-state condition, which is rarely reflective of real biological contexts. In contrast,
fractional calculus, capable of modelling systems perpetually out of equilibrium, can offer
a more realistic and dynamic understanding of methylation evolution over time. The
Mittag—Leffler (ML) function [31,32] arises naturally in the solution of ordinary and partial
fractional-order integro-differential equations, but also in random walks, Lévy flights, “frac-
tal calculus”, the study of complex systems, and in other fields. The properties of the ML
function and its generalisations, as well as the application of models based on the ML-type
functions, have been examined by many authors, e.g., [27,33-37]. Furthermore, one can find
several computational methods for numerical evaluation of the ML function e.g., [38,39].

The rapid progress in DNAm research highlights the need to use sophisticated ap-
proaches for modelling DNAm processes (epigenetic clocks) as complex and heterogeneous
systems, as more precise models could improve the interpretation of commonly used age-
related biomarkers, helping to identify individuals with accelerated ageing, and enabling
interventions and therapies aimed at slowing the ageing process and enhancing health.
Horvath’s clock [11] applies a logarithmic transformation to ages from birth to 20 years
and assumes linear age-related methylation changes in adults. In [40], the authors used
an epigenetic pacemaker framework to develop a model for epigenetic ageing, stating
that a logarithmic trend rather than a linear model more accurately describes epigenetic
ageing trajectories. In [41], a pseudotime analysis was used to determine the functional
form of age-associated methylation trajectories in human blood and brain tissue, resulting
in a methylation trajectory that follows an exponential pattern.

Motivated by the fact that mathematical models based on the ML function and its gen-
eralisations interpolate between a purely exponential law and a power-law-like behaviour,
thus enabling better capture of the dynamics of the studied systems, this work presents a
novel fractional calculus approach to modelling DNAm dynamics is presented, extending
the standard model, which is based on an integer-order differential equation with a solution
involving an exponential function. The proposed fractional-calculus representation of the
methylation process, described by a fractional-order differential equation and a solution
based on the ML function, not only achieves improved results in terms of selected com-
parison criteria (sum of absolute errors, sum of squared errors, mean absolute percentage
error, R-squared, and adjusted R-squared) compared to the standard model, but also offers
a more general form, where the standard exponential model is only one specific case.
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2. Modelling Methylation Dynamics—DNAm vs. Chronological Age

DNAm is a fundamental epigenetic mechanism involved in the regulation of gene
expression and various biological processes, including development, genomic imprinting,
and ageing. Linear mathematical models of DNAm often involve ordinary differential
Equations (ODEs) to describe the dynamics of methylation and demethylation at specific
CpG sites. Tracking the changes at the CpG sites over time, which include their states
(e.g., unmethylated, hemimethylated, or fully methylated), generally involves factors such
as DNA replication and the actions of enzymes like DNA methyltransferases (DNMTs)
and ten-eleven translocation (TET) enzymes. For instance, McGovern et al. [42] proposed
a system of six ODEs, considering six different states of a CpG dyad, while a simplified
version of the McGovern model, using three ODEs, was introduced in [43]. Recently,
a system of differential equations of fractional order, describing the dynamics of DNAm,
was presented in [44].

Motivated by this research direction, in this study, a standard model of DNAm dy-
namics described by a first-order ODE, whose solution contains an exponential function, is
compared to the newly proposed model based on a fractional-order differential equation,
with a solution containing the Mittag-Leffler function.

2.1. Standard Exponential Model of DNAm Dynamics

In a recent study [45], the authors explored the relationship between DNA methylation
and chronological age, finding that DNAm levels at specific sites do not change linearly with
age, but rather converge to a steady-state level exponentially. This indicates that DNAm
dynamics, as a system, begins out of equilibrium (at xp) and approaches equilibrium
(at xo) exponentially with age, and can, therefore, be described by a first-order differential
equation [45]:

dx

o = all—x(t) - px(t) =« — (a+ P)x(t) M
where x(t) represents the fraction of methylated cells at time f, « is the methylation rate, and
B is the demethylation rate. This model leads to an exponential approach to equilibrium:

S A S G
=358 <a+ﬁ xo)e " ?

but due to the complex nature of the methylation dynamics observed empirically in [45],
this model can capture the general trend only approximately.

2.2. Fractional Calculus Approach to DNAm Dynamics Modelling

To incorporate the complexity of the studied phenomena, the model (1) was extended
by introducing Caputo fractional derivative of order y of a function x(t) defined as [25,27]:

B 1 t x(")(‘f)
SD?JC(t) - l"(n _ F’l) ‘/0 (t o T)]Hrl*n dT/ (3)

where n — 1 < u < n,n is the smallest integer greater than i and I' denotes the Gamma
function defined as:

I(z) = /O Yoty @

with the condition Re(z) > 0. Thus, the model given in (1) is transformed into a fractional-
order differential equation in the following form [46]:

thVx(t) =wa(l—x(t)—pBx(t), 0<u<2, (5)
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where the fractional order p represents a parameter to capture the memory effect and
heterogeneity in methylation dynamics.

To solve the fractional differential equation given in (5), the Laplace transform was
used. The Laplace transform of the Caputo fractional derivative § D} x(t) is given by:

L{ng‘x(t)} = sM%(s) — " 1x(0), ©6)

where %(s) is the Laplace transform of x(t). Applying the Laplace transform to both sides
of the differential Equation (5), one obtains:

L 451x(0)

) = @

Therefore, the solution to the fractional differential Equation (5) can be represented by
taking the inverse Laplace transform of Equation (7):

o

+B

with E, being the one-parameter Mittag-Leffler function [31,32], a generalisation of the

x(t) = xot" " Ey(— (a4 B)H) + —— (1= Ep(—(a+ B)t")), ®)

exponential function, which can be defined as:

(o) Zn
Eu(z) = ———, (Re(u)>0,z€C). )
From (9), it follows that, in the simple case where y = 1, the Mittag-Leffler function
reduces to the usual exponential function (see Appendix A for more information on the
Mittag-Leffler function).

3. Experiments and Discussion on the Results
3.1. DNAm Dataset

Analysing a DNAm dataset obtained from a public functional genomics data reposi-
tory “Gene Expression Omnibus” [47], collected from the prefrontal cortex of individuals
ranging in age from neonates to centenarians, a set of 335 nonpsychiatric controls and
191 patients with schizophrenia across their lifespan was used. The data were collected
using the Illumina DNA methylation microarray, which measures over 485,502 CpG sites
across the genome. The reliability of Illumina DNA methylation microarrays is generally
high at the sample level, providing robust measures for global and regional methylation
analyses. However, probe-specific variability can affect accuracy, as performance depends
on sequence context, cross-reactivity, and detection limits at very low or high methylation
levels. Additionally, technical factors such as DNA quality, bisulphite conversion efficiency,
and batch effects may introduce noise that impacts modelling results. These considerations
emphasise the importance of proper normalisation, probe filtering, and statistical modelling
strategies in interpreting the findings of this study. The analysis was focused on the 10,000
most highly age-correlated sites, as these exhibit the most significant changes with age. By
observing various patterns across these sites, with some increasing and others decreasing
over time, it can be concluded that, for the majority of sites, the link between methylation
and age is nonlinear.
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3.2. Comparison Metrics for Modelling Performance Evaluation

Five goodness-of-fit comparison criteria were used to evaluate the accuracy of the
two compared models to describe the DNA methylation dynamics:

*  Sum of Absolute Errors (SAE) quantifies the total difference between predicted and
actual values by summing the absolute value of the discrepancies, serving as a measure
of the overall deviation in a dataset.

*  Sum of Squared Errors (SSE) measures the unexplained variance in the dependent
variable that the model does not account for, with the primary aim to minimise the
SSE value, resulting in a model that better fits the data.

*  Mean Absolute Percentage Error (MAPE) measures the average percentage difference
between predicted and actual values, indicating forecast accuracy by averaging the
absolute percentage errors across a set of data points, with a lower value signifying
a more accurate model.

e R-squared (R?) as a coefficient of determination from the interval [0, 1], indicates the
proportion of the variance in the dependent variable that can be predicted using the
independent variable (one or more), with values closer to one signifying a better fit.

*  Adjusted R-squared (R? d]-) accounts for the number of prediction parameters and sample
size, penalising the addition of irrelevant independent variables and preventing model
overfitting, being a superior criterion for comparing models with different numbers of
parameters, providing a more realistic measure of their performance.

Unlike R?, which always increases or remains the same when more prediction param-
eters are added, R2 gj can decrease if a new independent variable does not significantly
improve the model’s explanatory power. This makes it a more reliable metric for comparing
models with different numbers of prediction parameters.

3.3. Mathematical Models of DNAm Dynamics
For simplicity, the models (2) and (8) were reparameterised by combining the methyla-

tion and demethylation rates, using the relations:

o
a+p

Substituting (10) in the standard exponential model (2) solution to model (1), one
obtains the model in the form:

x(t) = Xeo — (¥oo — xp)e M. (11)

Likewise, when substituting (10) into the model given in (8), the solution to model (5),
which is based on the Mittag—Leffler function, one gets:

x(t) = xot" VEu (—AH) + xeo (1 — Ep(— A1), (12)

with the additional parameter y, which “tunes” the Mittag—Leffler function, in order to
capture the memory effects and heterogeneity of the DNA methylation dynamics.

3.4. Experimental Results

The models given in (11) and (12) were used to describe the data composed of the
DNAm levels x; from four sites of the prefrontal cortex of the examined individuals of
different age t;, where i = 1...526, including several individuals of each age, with a range
of values of the methylation state, to describe the average population behaviour. In
Figure 1A-D, the methylation levels as a function of age are displayed, representing four
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out of the 450K CpG sites that were measured in the analysed dataset. These four sites
were selected as they exhibit a strong correlation between DNAm and age in this cohort.
Two of the CpG sites (A, B) were selected as they exhibit an increasing correlation of methy-
lated CpGs with age, while the other two sites (C, D) exhibit a decreasing correlation; note
that all four sites demonstrate a strong nonlinear relationship between DNAm and age.
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(A) Exponential model: A = 0.0273, xo = 0.7882;
Mittag-Leffler model: y = 1.1209, A = 0.0135, xe = 0.7848.

(B) Exponential model: A = 0.0641, xe = 0.7448;
Mittag—Leffler model: y = 1.1033, A = 0.0023, xco = 0.6565.
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(C) Exponential model: A = 0.0662, xoo = 0.6833;
Mittag—Leffler model: # = 1.0000, A = 0.0661, xe = 0.6833.
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(D) Exponential model: A = 0.0811, xe = 0.2049;
Mittag—Leffler model: y = 0.9149, A = 0.0516, xeo = 0.1926.

Figure 1. Methylation time scale for CpG sites (A-D) from the prefrontal cortex dataset.

Evaluating the results visually (see Figure 1), the ability of the proposed Mittag—
Leffler model to better fit the data, especially for the individuals in the age interval of
approximately 0-20 years, is evident. This aligns with the fact that DNAm patterns exhibit
nonlinear dependence until adulthood, when they “slow” to a linear dependence.

The modelling performance results, evaluated using the selected comparison criteria
for both models, are shown in Table 1. In cases A, B, and D, the proposed Mittag—Leffler
model provided better results across all criteria, namely SAE, SSE, MAPE, R?, and Ridj'
in comparison to the standard exponential model. It is worth noting that, although the
complexity of the proposed Mittag—Leffler model (with one additional parameter) is greater
than that of the exponential model, it achieves superior Rﬁ dj results at the three selected
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CpG sites, thereby justifying its use and demonstrating its reliability. The only exception
can be seen in case C, where both models yield the same comparison criteria results,
apart from R?, ir which favours the exponential model due to its smaller complexity (one
less parameter).

Table 1. Modelling performance results for four CpG sites (A, B, C, D).

SAE A B C D
Exponential model 15.8160 25.5782 15.6237 13.8314
Mittag—Leffler model 15.2298 23.8069 15.6238 12.9521
SSE A B C D
Exponential model 0.81503 1.73680 0.66498 0.56234
Mittag-Leffler model 0.77447 1.52290 0.66497 0.50813
MAPE A B C D
Exponential model 6.05810 6.52110 3.63370 9.70770
Mittag—Leffler model 5.38320 5.82850 3.63390 9.39840
R? A B C D
Exponential model 0.93612 0.64137 0.55855 0.75920
Mittag—Leffler model 0.93930 0.68555 0.55856 0.78241
R, A B C D
Exponential model 0.93601 0.64078 0.55782 0.75880
Mittag-Leffler model 0.93910 0.68451 0.55710 0.78170

Although the Mittag-Leffler model achieved a smaller R2, i result at the CpG
site C compared to the exponential model, a crucial observation emerges: the Mittag—
Leffler model’s parameter u equals 1, and the other two identified parameters, A and x,
are nearly identical for both compared models (with a minimal difference in A due to the
identification procedure); consequently, the Mittag—Leffler function becomes a standard
exponential function, and the Mittag-Leffler model (12) reduces to the standard exponential
model (11). Thus, it can be concluded that the proposed Mittag—Leffler model, as the
solution to the fractional-order differential Equation (8), represents a generalisation of the
mathematical description of the methylation process, whereas the standard exponential
model, as the solution of a first-order ODE (1), represents only one special case.

The main advantage of using the proposed Mittag-Leffler model to describe DNAmM
dynamics is its ability to naturally interpolate between nonlinear and linear states by
incorporating intrinsic memory kernels, enabling it to exhibit slower decay or faster growth
compared to the exponential model, thereby providing a better fit for the empirically
observed slow convergence to equilibrium and the heterogeneity across different sites.
These findings can have future implications for understanding ageing and potentially for
developing biomarkers for ageing.

4. Conclusions

The DNAm is a tightly regulated epigenetic mechanism fundamental for proper gene
expression, cellular differentiation, and the maintenance of genome stability. Aberrant
methylation is generally rare and context-specific, with stochastic changes arising primarily
during ageing rather than as random, widespread events. These characteristics underscore
the biological significance of the methylation alterations observed in this study, suggesting
that they likely reflect meaningful age-related processes rather than background noise. This
study investigates various analytical forms to characterise the dynamics of the DNAm
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process with age, proposing an approach based on fractional calculus, employing the
Caputo fractional derivative and the Mittag—Leffler function. The findings demonstrate
that fractional calculus offers a more precise description of age-related changes in DNAm
than standard models based on integer-order differential equations.

The modelling performance results evaluated using the selected comparison criteria
(SAE, SSE, MAPE, R?, and Ri 4 j) prove that the proposed fractional-order model, which
incorporates the Mittag—Leffler function in its solution, provides a more accurate data
representation by capturing the dynamics of DNAm rate changes with age at individ-
ual CpG sites, compared to the traditional model in the form of a first-order differential
equation, whose solution involves an exponential function. The ability of the fractional
calculus approach to account for nonlinear and memory-dependent behaviour aligns well
with the biological complexity of methylation processes, which often involve gradual and
cumulative changes over time. This enhanced modelling capability is particularly evident
in the improved fit to experimental data and the ability to describe the age-dependent
methylation patterns more effectively. These findings suggest that the fractional calculus
framework could offer valuable insights into age-related epigenetic modifications, po-
tentially advancing the understanding of the underlying mechanisms of ageing and its
implications for health and disease. Developing more precise analytical models of DNAm
changes with age allows the identification of CpGs that change reproducibly with age,
which can potentially serve as biomarkers of ageing in future research.
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Appendix A. Mittag-Leffler Function

For better projection of the possible manifestations of the Mittag-Leffler function
based models, some of the trajectories dependent on the parameter y are shown in
Figure A1A for the function y(x) = cx!"#E,(bx"), and in Figure A1B for the function
y(x) = cx1E, (bx*), with c = 5and b = —5 for both models.
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Figure A1l. The behaviour of two distinct analytic models y(x), containing the Mittag-Leffler function.
Some special cases of the Mittag—Leffler function are as follows [27,37]:
Ei(t) = exp(tz) erfc(—t),
Er(t) =exp(t), Ea(t) =cosh(vE), Ep(—#) = cos(t), (A1)
1 3
E; (:tt3> = 2 et 42672 cos £t‘ ,
3 2
where erfc is the complementary error function, which has the following relation with the
error function erf:
2 ot 2 [®
erfct:1—erft:1——/e*TdT:—/ e”"drt. A2
(t =1-— = (A2)
Furthermore, there is the following duplication formula for the one-parameter Mittag—
Leffler function:
2E,, (tz) — Eu(t) + Ep(—1). (A3)
In addition:
00 t;;,n
E(-t)=) (-1)'———, (t>0, 0<u<1), (A4)
: n;) T(pn+1)
which provides the solution to the fractional relaxation equation. There are also the two
commonly stated asymptotic representations for it as follows [37]:
th tH
1—m+~exp[—w],t—>o,
00 — —Hn
Ep(—t") =4 ~ Y%, (-1)" 1m,t—>o(o,:)>( | (A5)
_ t _ sin(um) I'(p
= forn =1, i) = o =t — o0,
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